izpis_h1_title_alt

Globalni izreki o sklenjenosti krivulj : diplomsko delo
ID Špringer, Tina (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/4661 This link opens in a new window

Abstract
V prvem delu diplomske naloge najprej predstavimo osnovne definicije in lastnosti krivulj v prostoru, to je krivulj, ki ležijo v R3. Definiramo ločno dolžino in ukrivljenost. V nadaljevanju dokažemo nekaj globalnih izrekov o ukrivljenosti krivulj. Prvi izrek poveže ukrivljenost in skladnost krivulj. Fenchelov izrek nam pove, koliko se mora prostorska krivulja ukrivljati, da postane sklenjena, medtem ko nam Fary-Milnorjev izrek pove, koliko se mora prostorska krivulja vsaj še dodatno ukrivljati, da postane zavozlana. V zadnjem delu diplomske naloge pa zaključimo z ukrivljenostjo ravninskih krivulj, to je krivulj, ki ležijo v R2.

Language:Slovenian
Keywords:ukrivljenost krivulj v R3, skladnost krivulj, Fenchelov izrek, Fary-Milnorjev izrek
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[T. Špringer]
Year:2017
Number of pages:IV, 22 str.
PID:20.500.12556/RUL-95172 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:11699785 This link opens in a new window
Publication date in RUL:19.09.2017
Views:1278
Downloads:316
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Global theorems of closed curves
Abstract:
In this diploma thesis we first present basic definitions and properties of space curves, that is curves in R3. We define the length and local curvatures of space curves. Next we prove some global theorems concerning the curvatures. The first theorem connects congruence and curvatures of a space curves. Fenchel's theorem shows the lower estimate on total curvature of a closed curve while Frey-Milnor's theorem shows that a knotted curve must have an even larger total curvature. We conclude by discussing total curvature of plane curves.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back