izpis_h1_title_alt

Koliko točk določa katero geometrijsko ploskev?
ID POLANC, MIHA (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,38 MB)
MD5: 289B8D40043CEF39E02B5E080BCF3C34
PID: 20.500.12556/rul/4954936c-61e7-4942-8015-fe56a13f5514

Abstract
Geometrijsko ploskev lahko približno opišemo s končnim vzorcem njenih točk. V delu se ukvarjamo z vprašanjem, s koliko točkami, glede na način vzorčenja in rod ploskve, lahko zanesljivo rekonstruiramo originalno geometrijsko ploskev. Najprej opišemo različne načine vzorčenja točk s ploskve, kaj je enakomerni in kaj je slučajni vzorec točk z izbrane ploskve. Vzorce lahko obravnavamo s topološkimi metodami, natančneje metodami vztrajne homologije. Iz vzorca točk s programskim paketom Javaplex konstruiramo filtracijo Vietoris-Ripsovih simplicialnih kompleksov in opazujemo črtni diagram Bettijevih števil. V zaključku predstavimo računske rezultate za sfero in torus glede na različna modela vzorčenja, ter nekaj možnosti za nadaljnje izboljšave.

Language:Slovenian
Keywords:Vietoris-Ripsov kompleks, Bettijeva števila, Javaplex, vztrajna homologija, sfera, torus.
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-85894 This link opens in a new window
Publication date in RUL:28.09.2016
Views:1601
Downloads:626
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:How many points are needed to determine a geometric surface?
Abstract:
A geometric surface can be approximately described using a finite point-sample. The main question of this thesis is the following: how many points, depending on the sampling model and surface genus, are needed to confidently reconstruct the original geometric surface. First we present different sampling models of surface points — the uniform and the random sample. We use topological methods, in particular persistent homology, to process our data. Using Javaplex software package we construct a filtration with Vietoris-Rips simplicial complexes and consider the bar-code diagram of its Betti numbers. Finally we present our computational results for both the sphere and the geometric torus with respect to the two sampling models , and several options for further improvements.

Keywords:Vietoris-Rips complex, Betti numbers, Javaplex, persistent homology, sphere, torus.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back