Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
ID
GABRIEL, LUKA LAN
(
Avtor
),
ID
Peer, Peter
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(4,45 MB)
MD5: A04A70326C2EAADE1CEE75421632FC9A
PID:
20.500.12556/rul/eb513c13-b7d8-476b-ac68-22866f0913dc
Galerija slik
Izvleček
Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju računalniškega vida. Zaznavanje uhljev je v zadnjih letih postala popularna aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, histogramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izboljšal v primerjavi z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo naša metoda uporabljena v orodju Annotated Web Ears Toolbox.
Jezik:
Angleški jezik
Ključne besede:
računalniški vid
,
segmentacija
,
konvolucijske nevronske mreže
,
detekcija uhljev
Vrsta gradiva:
Diplomsko delo/naloga
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Leto izida:
2016
PID:
20.500.12556/RUL-84351
Datum objave v RUL:
16.08.2016
Število ogledov:
3591
Število prenosov:
376
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GABRIEL, LUKA LAN, 2016,
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
[na spletu]. Diplomsko delo. [Dostopano 1 april 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=84351
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Slovenski jezik
Naslov:
Ear detection with convolutional neural networks
Izvleček:
Object detection is still considered a difficult task in the field of computer vision. Specifically, earlobe detection has become a popular application as the interest in human identification using earlobe biometry has increased. So far earlobe detection problem has been solved using a combination of skin detection, edge detection, segmentation by fusion of histogram-based k-means, and template matching algorithms. In this work we present a method of earlobe detection without template matching by using a convolutional neural network, performing image segmentation. With this method, which is invariant to angle at which the photo was taken, earlobe shape, skin color, illumination, occlusions, and earlobe accessories, we were able to accurately detect the area of the image, where an earlobe is present. Moreover, detection time was significantly improved when compared to other methods for solving the same task. We expect our method to be used in Annotated Web Ears Toolbox.
Ključne besede:
computer vision
,
segmentation
,
convolutional neural networks
,
earlobe detection
Podobna dela
Podobna dela v RUL:
effect of strain rate on mechanical properties of PK11SP steel microalloyed with titanium
ǂthe ǂinfluence of deformation degree on mechanical properties of cold drawn PT929 steel
influence of scrap revert type on mechanical properties of AlSi10Mg(Fe) alloy
effect of recycled material on mechanical properties of polypropylene
influence of cooling rate and nucleation potential on mechanical properties of AlSi9Cu3
Podobna dela v drugih slovenskih zbirkah:
Vpliv gostote na mehanske lastnosti jekla, proizvedenega s prškasto metalurgijo
Tensile test models for low-carbon microalloyed steels with high niobium contents
ǂThe ǂInfluence of mechanical properties of steel pressure vessels on crack appearance at tensile loading
Effect of fiber-layer positions on mechanical properties of carbon fiber reinforced materials manufactured by fused deposition modeling
Mechanical properties of a welded joint welded by a highly productive arc process
Nazaj