Podrobno

Detekcija uhljev s konvolucijskimi nevronskimi mrežami
ID GABRIEL, LUKA LAN (Avtor), ID Peer, Peter (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (4,45 MB)
MD5: A04A70326C2EAADE1CEE75421632FC9A
PID: 20.500.12556/rul/eb513c13-b7d8-476b-ac68-22866f0913dc

Izvleček
Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju računalniškega vida. Zaznavanje uhljev je v zadnjih letih postala popularna aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, histogramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izboljšal v primerjavi z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo naša metoda uporabljena v orodju Annotated Web Ears Toolbox.

Jezik:Angleški jezik
Ključne besede:računalniški vid, segmentacija, konvolucijske nevronske mreže, detekcija uhljev
Vrsta gradiva:Diplomsko delo/naloga
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2016
PID:20.500.12556/RUL-84351 Povezava se odpre v novem oknu
Datum objave v RUL:16.08.2016
Število ogledov:3361
Število prenosov:376
Metapodatki:XML DC-XML DC-RDF
:
GABRIEL, LUKA LAN, 2016, Detekcija uhljev s konvolucijskimi nevronskimi mrežami [na spletu]. Diplomsko delo. [Dostopano 26 marec 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=84351
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Ear detection with convolutional neural networks
Izvleček:
Object detection is still considered a difficult task in the field of computer vision. Specifically, earlobe detection has become a popular application as the interest in human identification using earlobe biometry has increased. So far earlobe detection problem has been solved using a combination of skin detection, edge detection, segmentation by fusion of histogram-based k-means, and template matching algorithms. In this work we present a method of earlobe detection without template matching by using a convolutional neural network, performing image segmentation. With this method, which is invariant to angle at which the photo was taken, earlobe shape, skin color, illumination, occlusions, and earlobe accessories, we were able to accurately detect the area of the image, where an earlobe is present. Moreover, detection time was significantly improved when compared to other methods for solving the same task. We expect our method to be used in Annotated Web Ears Toolbox.

Ključne besede:computer vision, segmentation, convolutional neural networks, earlobe detection

Podobna dela

Podobna dela v RUL:
  1. Preučevanje ekspresije gena za folatni receptor ß v nedrobnoceličnem pljučnem rakavem tkivu
  2. Preučevanje izražanja gena za protein SPOT 14 v nedrobnoceličnem pljučnem rakavem tkivu
  3. Proučevanje izražanja gena za fosfatidiletanolamin-N-metiltransferazo v nedrobnoceličnem pljučnem rakavem tkivu
  4. Preučevanje izražanja gena za sintazo višjih maščobnih kislin v nedrobnoceličnem rakavem tkivu
  5. Prikaz makrofagno specifičnih membranskih označevalcev na celicah z visokim izražanjem mRNA LPL v nedrobnoceličnem pljučnem rakavem tkivu
Podobna dela v drugih slovenskih zbirkah:
  1. Novosti v zdravljenju pljučnega raka ASCO, Chicago, 1.-5. junij 2012
  2. Nove podobe pljučnega raka
  3. Novosti v zdravljenju pljučnega raka
  4. Naše izkušnje s citostatskim zdravljenjem drobnoceličnega pljučnega raka
  5. PD-L1 expression can be regarded as prognostic factor for survival of non-small cell lung cancer patients after chemoradiotherapy

Nazaj