In the future, spherical motors could largely replace traditional single-axle, single degree of freedom electrical motors. Due to their design, spherical motor can operate in several degrees of freedom. This means that the drives where spherical motors are used can be lighter, smaller, more responsive and more cost-effective. Consequently, scientists worldwide are trying to develop a useful spherical motor.
The goal of this thesis is to present, to model and to analyze spherical induction motors by means of finite element method.
Three dimensional finite element model of spherical induction motor was built up in Flux software environment.
The mechanical construction of spherical induction motor is relatively simple, which significantly facilitates development of the 3D finite element model. The numerical modeling and analysis in three dimensional environment allowed me to obtain accurate results. The simulation results showed that spherical induction motor does not achieve the same or at least comparable performance as conventional single degree of freedom induction motor. I therefore determined the main disadvantages of the spherical machines and concluded, that at the time being the development of multi degree-of- freedom spherical motors has not yet achieved the level for their massive use and production.
|