izpis_h1_title_alt

Eatonova leča
ID Matko, Sara (Author), ID Razpet, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/3471/ This link opens in a new window

Abstract
Elipso v vsakdanjem življenju spoznavamo kot ortogonalno projekcijo krožnice na ravnino. Zgodovina matematike pa nam pravi, da je elipso kot stožnico obdelal že Apolonij iz Perge v tretjem in drugem stoletju pred našim štetjem. Šele čez več kot tisoč let sta Johannes Kepler in Isaac Newton odkrila njeno uporabnost, in sicer za opis gibanja planetov okoli Sonca. Prav tako nam neka lastnost elipse pomaga pri konstruiranju Cassinijeve krivulje. Z uporabo Binetove enačbe obravnavamo tudi gibanje točkastega telesa okoli negibnega privlačnega središča. Z matematičnimi metodami rešujemo probleme tudi v geometrijski optiki. S pomočjo Fermatovega principa v optiki in variacijskega računa dobimo potek svetlobnih žarkov v Eatonovi leči. Prav tako bomo pokazali, kako nam lahko računalnik s primerno programsko opremo, kot je GeoGebra, pomaga pri odkrivanju lastnosti Eatonove leče.

Language:Slovenian
Keywords:optika
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2016
PID:20.500.12556/RUL-83144 This link opens in a new window
COBISS.SI-ID:11019593 This link opens in a new window
Publication date in RUL:24.08.2016
Views:1139
Downloads:234
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Eaton lens
Abstract:
In everyday life an ellipse is recognized as an orthogonal projection of a circle to a plane. The history of mathematics tells us, that the ellipse as a conic section was already studied by Apollonius of Perge in the third and second century BC. Only after more than a thousand years, Johannes Kepler and Isaac Newton discovered its applicability, namely to describe the planetary motion around the Sun. Certain distinctive property of ellipse also allows us to help in constructing the Cassini curves. By using Binet´s equation we also deal with the motion of a particle around a fixed attracting center. With the mathematical methods we solved problems also in geometrical optics. By using Fermat's principle in optics and calculus of variations we find the path of light rays in Eaton lens. We will also show, how the computer endowed by a suitable software, such as GeoGebra, help us discover properties of Eaton lenses.

Keywords:optics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back