izpis_h1_title_alt

Mere podobnosti nizov
LORBER, MOJCA (Author), Mihelič, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,00 MB)
MD5: 457A139F64A3C096926FC072B8BD597C

Abstract
Diplomska naloga Mere podobnosti nizov proučuje problem primerjanja nizov, kjer nas zanimajo ujemanja, ki dovoljujejo tudi napake. Takšnemu problemu pravimo tudi problem približnega ujemanja nizov in njegov bistveni del je definicija modela napak ter s tem izbira mere podobnosti oz. različnosti. V nalogi na začetku izvedemo splošen pregled mer, potem pa se v nadaljevanju osredotočimo na skupino mer, ki temelji na operacijah urejanja nizov. Definicija razdalje med nizoma je tako določena s stroškom operacij, ki prvi niz najbolj optimalno preuredi v drugega. V tem sklopu nato opišemo nekaj algoritmov na osnovi metode dinamičnega programiranja ter dodamo še par njihovih nadgradenj. S pomočjo primera nazorno prikažemo njihovo izvajanje ter z analizo predstavimo tudi njihove računske zahtevnosti.

Language:Slovenian
Keywords:podobnost, različnost, mera podobnosti, primerjanje nizov, poravnava nizov, razdalja urejanja, najdaljše skupno podzaporedje
Work type:Bachelor thesis/paper (mb11)
Organization:FRI - Faculty of computer and information science
Year:2016
Views:1031
Downloads:509
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:String similarity measures
Abstract:
The thesis String similarity measures examines string matching problem, where we are interested in matchings allowing errors. Such problem is also called approximate string matching problem, and its essential part is the definition of error model and by this the type of a similarity or dissimilarity measure. In the beginning of the thesis we present a general overview of measures, then we further focus on the group of measures based on the edit operations on strings. The definition of such distance between strings is established with the cost of operations that are needed for an optimal transformation from one string to another. Further on, we describe a few algorithms based on dynamic programming, and then we add a couple of upgraded versions. With a help of an example we try to demonstrate their performance and analyse their computational complexity.

Keywords:similarity, dissimilarity, similarity measure, string matching, string alignment, edit distance, longest common subsequence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back