izpis_h1_title_alt

Geografska segmentacija uporabnikov za uporabo v oglaševanju : diplomsko delo
ID Dolenc, Blaž (Author), ID Zupan, Blaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,52 MB)
MD5: 572D1F526F3F3AF465A985D0E34D16AB
PID: 20.500.12556/rul/e6fb8293-e935-4bd4-9762-9d193e189510

Abstract
V današnjem spletnem oglaševanju ni več edini cilj prikazati oglasa čim večjemu številu potencialnih kupcev, temveč si oglaševalci vse bolj prizadevajo oglas prikazati tistemu, ki ga bo najverjetneje zanimal. Na primer, če poznamo uporabnikovo okvirno lokacijo, lahko na podlagi prejšnjih obiskovalcev napovemo klik oglasa. Potrebo po geografski segmentaciji uporabnikov so zaznali tudi pri podjetju Zemanta, kjer so študentom zastavili izziv, pri katerem je bilo potrebno obiskovalce spletnih strani razdeliti glede na poštno številko iz katere prihajajo, ter to uporabiti kot podlago za napoved klika. Cilj naloge je bilo poiskati čim bolj smiselne skupine uporabnikov, ter jih ustrezno predstaviti, v drugem delu pa zgraditi napovedni model za napovedovanje klika na oglas, ki bo dosegal točnost napovedi AUC okoli 0,75. V nalogi poročamo o naši rešitvi tega problema, ki uporablja vrsto tehnik s področja strojnega učenja. Končna razdelitev uporabnikov, ki jo predlagamo, je obsegala 20 skupin, ki so se med seboj močno razlikovale glede na gostoto poselitve, urbanizacije in ostalih demografskih dejavnikov. Prikaz skupin na zemljevidu je pokazal, da je razdelitev smiselna. Končni AUC na testnih podatkih je znašal 0,79.

Language:Slovenian
Keywords:Iskanje skupin v podatkih, gručenje, strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[B. Dolenc]
Year:2015
Number of pages:42 str.
PID:20.500.12556/RUL-72418 This link opens in a new window
COBISS.SI-ID:1536527811 This link opens in a new window
Publication date in RUL:16.09.2015
Views:1257
Downloads:189
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Licences

License:CC BY 2.5 SI, Creative Commons Attribution 2.5 Slovenia
Link:https://creativecommons.org/licenses/by/2.5/si/deed.en
Description:You are free to reproduce and redistribute the material in any medium or format. You are free to remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Secondary language

Language:English
Title:Geographic segmentation of users and its use in advertising
Abstract:
In modern web advertising the goal is not only deliver an ad to a broad number of customers, but to target particular customers who are more likely to be interested in content. If the user location is known, we can estimate click on ad based on previous visitors. The company Zemanta recognized the need for geographic audience segmentation, and they have invited students to solve their challenge. The goal was geographic segmentation of web pages visitors based on the ZIP code they come from and development of a prediction model, which can estimate the probability of click on the ad, with accuracy (AUC score) around 0,75. In this dissertation, we describe our the solution to the challenge. Our user segmentation identified 20 groups. There were large differences between them considering population density, urbanization and other demographic indicators. Plotting results on map revealed, that segmentation is meaningful. Our final AUC score on test data was 0,79.

Keywords:Clustering, Data mining, Machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back