izpis_h1_title_alt

Profiliranje spletnih uporabnikov v spletnem oglaševanju : doktorska disertacija
ID Košir, Domen (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window, ID Bosnić, Zoran (Comentor)

.pdfPDF - Presentation file, Download (3,02 MB)
MD5: 69A3784DE2A3DA428430454240AE6D9A

Abstract
Ogromni dobički velikih spletnih podjetij izhajajo večinoma iz naslova spletnega oglaševanja in so glavno gonilo napredka na področjih profiliranja spletnih uporabnikov ter sistemov za priporočanje. Nova metoda za gradnjo ontoloških uporabniških profilov AverageActionFC temelji na tehnikah časovnega pozabljanja in popravljanja profilov s prototipi. Prototipi predstavljajo domensko znanje, s katerim lahko občutno izboljšamo kvaliteto profila. Rezultati kažejo, da lahko z našo metodo zgradimo profile višje kakovosti kot z obstoječimi metodami. Sistemi za priporočanje, ki temeljijo na matrični faktorizaciji, trpijo za t.i. problemom hladnega zagona. Vrednosti skritih faktorjev za nove uporabnike napovedujemo na podlagi semantičnih informacij v njihovih profilih z uporabo metod strojnega učenja. Kakovost teh seznamov izdatno izboljšamo s pametnim kombiniranjem priporočil več sistemov za priporočanje.

Language:Slovenian
Keywords:spletno oglaševanje, profiliranje, sistemi za priporočanje, sledenje uporabnikom, zasebnost uporabnikov, računalništvo, disertacije
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FRI - Faculty of Computer and Information Science
Publisher:[D. Košir]
Year:2015
Number of pages:IX, 127 str.
PID:20.500.12556/RUL-70131 This link opens in a new window
UDC:004.7:659.1(043.3)
COBISS.SI-ID:1536209091 This link opens in a new window
Publication date in RUL:10.07.2015
Views:2095
Downloads:334
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Web User Profiling in Online Advertising
Abstract:
Online advertising is a multi-billion dollar industry. Big internet companies are therefore highly motivated to improve their user profiling methods and recommendation systems. We present a novel ontological profiling method AverageActionFC. It is based on time-based forgetting and profile correction with prototypes. The prototypes are a representation of domain knowledge and can be efficiently used to improve the quality of a user's profile. The experiments show that our method significantly outperforms existing methods. Collaborative filtering recommendation systems suffer from the cold start problem. We employ machine learning algorithms to increase the quality of recommendations for new users by predicting the latent factor values based on the semantic information in their profiles. We further improve the quality of recommendation lists by combining recommendations from two or more systems

Keywords:online advertising, profiling, recommendation systems, user tracking, privacy, doctoral dissertations, theses

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back