izpis_h1_title_alt

Reachability relations in digraphs
ID Malnič, Aleksander (Avtor), ID Marušič, Dragan (Avtor), ID Seifter, Norbert (Avtor), ID Šparl, Primož (Avtor), ID Zgrablić, Boris (Avtor)

URLURL - Predstavitvena datoteka, za dostop obiščite http://dx.doi.org/10.1016/j.ejc.2007.11.003 Povezava se odpre v novem oknu

Izvleček
In this paper we study reachability relations on vertices of digraphs, informally defined as follows. First, the weight of a walk is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed in the direction opposite to their orientation. Then, a vertex ▫$u$▫ is ▫$R_k^+$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at u has weight in the interval ▫$[0,k]$▫. Similarly, a vertex ▫$u$▫ is ▫$R_k^-$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at ▫$u$▫ has weight in the interval ▫$[-k,0]$▫. For all positive integers ▫$k$▫, the relations ▫$R_k^+$▫ and ▫$R_k^-$▫ are equivalence relations on the vertex set of a given digraph. We prove that, for transitive digraphs, properties of these relations are closely related to other properties such as having property ▫$\mathbb{Z}$▫, the number of ends, growth conditions, and vertex degree.

Jezik:Angleški jezik
Ključne besede:graph theory, digraph, reachability relations, end of a graph, property ▫$\mathbb{Z}$▫, growth
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:PEF - Pedagoška fakulteta
Leto izida:2008
Št. strani:Str. 1566-1581
Številčenje:Vol. 29, no. 7
PID:20.500.12556/RUL-45605 Povezava se odpre v novem oknu
UDK:519.17
ISSN pri članku:0195-6698
DOI:10.1016/j.ejc.2007.11.003 Povezava se odpre v novem oknu
COBISS.SI-ID:2017509 Povezava se odpre v novem oknu
Datum objave v RUL:10.07.2015
Število ogledov:1637
Število prenosov:407
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:European journal of combinatorics
Skrajšan naslov:Eur. j. comb.
Založnik:Elsevier
ISSN:0195-6698
COBISS.SI-ID:25427968 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:teorija grafov, usmerjeni grafi, rast

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj