Details

Modeliranje vpliva smrti igralca na rezultat igre League of Legends
ID Ferreira, Ruben (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (819,89 KB)
MD5: 005B0A90C48F307E1DDE2350983CC662

Abstract
League of Legends (LoL) se je uveljavil kot eden izmed najbolj gledanih ter igranih e-športov na svetu. Naše delo preučuje vpliv smrti posameznega igralca na verjetnost zmage v igri League of Legends. Z uradnim aplikacijskim programskim vmesnikom podjetja Riot in jav- nimi viri zberemo velik nabor tekem diamantne lige in iz vsake tekme izluščimo minutno predstavitev stanja. Na podlagi teh značilk zgradimo in kalibriramo model verjetnosti zmage. V nadaljevanju opredelimo pojem okna smrti - in- terval med stanjem tik pred smrtjo in prvim stanjem po vrnitvi igralca v igro. Spremembo ekipne verjetnosti zmage v tem oknu porazdelimo med igralce z metriko Performance Score, ki je odvisna od vloge igralca v igri in uteˇzena z globalnimi SHAP ocenami. Empirično analiziramo 150 472 oken smrti. V povprečju se verjetnost zmage ekipe mrtvega igralca zniža za 2,03 %, pri čemer v 58 % oken upade, v 42 % pa naraste. Ugotovimo, da se pozitivni prispevki igralca, ki je umrl pogosteje pojavijo, kadar igralec tik pred smrtjo tudi ubije nasprotnika oz. dobi zlato. Negativni prispevki pa se pojavijo v pričakovano več primerih in so rezultat smrti, ki ne koristijo niti igralcu, niti ekipi. Predstavljeni pristop omogoča hitro prepoznavanje najvplivnejših smrti in učnih priložnosti.

Language:Slovenian
Keywords:League of Legends, strojno učenje, analiza podatkov, vpliv igralcev
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-173264 This link opens in a new window
COBISS.SI-ID:250548995 This link opens in a new window
Publication date in RUL:15.09.2025
Views:152
Downloads:29
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of the impact of player deaths on game outcomes in League of Legends
Abstract:
League of Legends (LoL) has established itself as one of the most watched and played e-sports in the world. Our work examines the impact of the death of an individual player on the probability of victory in League of Legends. Using the official Riot Games application programming interface and pub- lic sources, we compile a large dataset of Diamond-rank matches and derive a minute-by-minute representation of each game state. Based on these fea- tures, we construct and calibrate a win probability model. We then define the concept of a death window —the interval between the state immediately before a death and the first state after the player returns to the game. The change in team win probability within this window is attributed to individual players using a Performance Score, which depends on the role of the player and by the global SHAP values. Our empirical analysis covers 150,472 death windows. On average, the probability of victory for the team of the deceased player decreases by 2.03%; the probability falls in 58% of windows and rises in 42%. Our results show that positive contributions from the deceased player occur more frequently when the team secures objectives or achieves favorable trades during the absence. The proposed approach enables rapid identification of the most impactful deaths and learning opportunities.

Keywords:League of Legends, machine learning, data analysis, player impact

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back