Details

Natančno časovno označevanje podatkov iz senzorja brez zunanjega časovnega signala
ID Oblak, Jernej (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window, ID Golobič, Bogdan (Comentor)

.pdfPDF - Presentation file, Download (673,62 KB)
MD5: 2C053A5F44C7BC7E1D82DBF16C5C308B

Abstract
V delu obravnavamo natančno časovno označevanje podatkov iz senzorjev brez zunanjega časovnega signala. Najprej empirično modeliramo frekvenco vzorčenja izbrane inercialne merilne enote (ICM-42688-P) v odvisnosti od temperature. Na podlagi zajema podatkov pokažemo, da je zveza med temperaturo in frekvenco skoraj povsem linearna, zato uporabimo linearno regresijo in dobimo model z visoko statistično mero R^2. Samo s sledenjem modelu dosežemo majhen lokalni šum, vendar pride do zdrsa časovnih žigov. Težavo odpravimo z enorazsežnim linearnim Kalmanovim filtrom, ki napoved modela združi z meritvami referenčne ure. Rezultat je postopek, ki lokalno močno zmanjša šum (standardni odklon razlik zaporednih žigov znižamo približno za tri rede velikosti) in hkrati dolgoročno omeji odmik od referenčne ure. Metoda je splošno uporabna tudi za druge senzorje, ki nimajo zunanjega časovnega vhoda.

Language:Slovenian
Keywords:časovno označevanje, časovni žig, inercialna merilna enota, linearna regresija, Kalmanov filter
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-172653 This link opens in a new window
COBISS.SI-ID:249594627 This link opens in a new window
Publication date in RUL:10.09.2025
Views:160
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Accurate timestamping of sensor data without an external clock input
Abstract:
We address accurate timestamping of sensor data when no external clock input is available. We first empirically model the sampling frequency of an inertial measurement unit (ICM-42688-P) as a function of temperature. Using linear regression, we obtain a linear model with a very high R^2. Pure model-based timestamping reduces local noise but accumulates drift over time. To overcome this, we implement a one-dimensional linear Kalman filter that fuses the model prediction with reference clock measurements. The resulting procedure drastically reduces local noise (the standard deviation of consecutive timestamp differences drops by roughly three orders of magnitude) while keeping the long-term deviation from the reference clock bounded. The approach generalizes to other sensors lacking an external time reference.

Keywords:timestamp, inertial measurement unit, linear regression, Kalman filter

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back