Details

Sistem detekcije vlažnosti zemlje na osnovi strojnega vida
ID Križnič, Tisa (Author), ID Podržaj, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,33 MB)
MD5: 493A669204497DE2BA3B3D0E5EBB60A4

Abstract
V magistrskem delu smo razvili avtonomen, cenovno dostopen in energetsko varčen sistem za brezkontaktno merjenje vlažnosti tal manjših kmetijskih površin. Merilni sistem združuje kamero, senzorja osvetljenosti in referenčne vlažnosti ter multimodalno večvejno nevronsko mrežo, ki iz digitalnih slik, osvetljenosti in kategoričnih oznak lokacije ter vremenskega stanja napove vlažnost tal. Sistem smo iterativno optimizirali in preizkusili na več lokacijah. Rezultati izkazujejo visoko točnost, pri čemer smo opazili, da je stopnja robustnosti modela močno odvisna od raznolikosti učnega sklopa.

Language:Slovenian
Keywords:vlažnost tal, Raspberry Pi kamera, bližnje brezkontaktno merjenje vlažnosti tal, konvolucijska nevronska mreža, regresijski problem, nadzorovano učenje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XXII, 122 str.
PID:20.500.12556/RUL-171690 This link opens in a new window
UDC:681.5.08:631.423.2:004.85(043.2)
Publication date in RUL:30.08.2025
Views:228
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine vision based soil moisture detection system
Abstract:
In this master’s thesis, we developed an autonomous, cost-effective, and energy-efficient system for non-contact soil moisture measurement on small‑scale agricultural fields. The measuring system combines a camera, illuminance and reference moisture sensors, and a multimodal multi‑branch neural network, which predicts soil moisture from digital images, illuminance data and categorical labels of location and weather conditions. We iteratively optimized and tested the system across multiple locations. The results demonstrate high accuracy, with the model’s robustness found to be highly dependent on the diversity of the training dataset.

Keywords:soil moisture, Raspberry Pi camera, proximal non-contact soil moisture measurement, convolutional neural network, regression problem, supervised learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back