Okvare vodovodnih cevi v urbanih omrežjih so pomemben vzrok komercialnih izgub zaradi neobračunane vode, motenj v oskrbi in visokih stroškov vzdrževanja. Ta študija razvija model strojnega učenja za napoved verjetnosti okvar cevovodov in podporo strategijam vzdrževanja, temelječim na tveganju. Model, izurjen na podatkih o infrastrukturi in geoprostorskih podatkih iz obdobja 2010–2025, vključuje standardne lastnosti cevi – kot so material, starost, premer, vrsta omrežja in zgodovina vzdrževanja – ter prostorsko izpeljane kazalnike infrastrukture v neposredni soseščini. Posebej pomembno je, da model kvantificira napovedno vrednost sosednjih infrastrukturnih sistemov, vključno z električnim omrežjem, plinovodi, daljinskim ogrevanjem, kanalizacijo in cestnim omrežjem, z uporabo prostorske analize soseščine in tehnik prekrivanja. Več teh medinfrastrukturnih značilnosti, zlasti kategorija ceste, napetost električnega omrežja in tip kanalizacije, je pokazalo pomemben napovedni vpliv, kar odraža njihovo posredno, a dosledno povezavo z verjetnostjo okvare cevi. Model strojnega učenja, zasnovan z algoritmom XGBoost in validiran s slojevitim navzkrižnim preverjanjem (K-fold), je dosegel visoko zmogljivost (ROC AUC: 0,9102; priklic: 0,7750; natančnost: 0,8750). Kljub nižji preciznosti zaradi neravnovesja razredov rezultat F1 (0,2261) in LogLoss (0,2500) potrjujeta njegovo zanesljivost. Raziskava predstavlja nov, s prostorskimi podatki obogaten pristop k napovedovanju okvar in prispeva k naprednemu, na podatkih temelječem upravljanju urbane infrastrukture
|