Details

Klasifikacija zvokov živali iz mokrišč z uporabo učenja z malo učnimi primeri
ID Abramovič, Anja (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,19 MB)
MD5: A85A580BD756F41B02EC15277F264434

Abstract
V diplomski nalogi obravnavamo problem avtomatske klasifikacije živalskih zvokov iz mokrišč v pogojih, kjer je na voljo le malo označenih podatkov. Uporabili smo pristope učenja z malo učnimi primeri in samonadzorovanega učenja ter preizkusili tri sodobne modele (CLAP, BYOL-A in M2D) za prepoznavo oglašanja žabe \textit{Rana dalmatina} v zračnih in podvodnih posnetkih. Model M2D je dosegel najboljše rezultate, dodatno treniranje na neoznačenih podatkih pa je F1-mero zvišalo z 0,902 na 0,934. Za boljšo organizacijo velike količine podatkov smo uporabili gručenje z algoritmom HDBSCAN in vizualizacijo z UMAP, kar je omogočilo učinkovito analizo in interpretacijo neoznačenih zvočnih predstavitev.

Language:Slovenian
Keywords:bioakustika, učenje z malo učnimi primeri, samonadzorovano učenje, klasifikacija zvoka, gručenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-171259 This link opens in a new window
COBISS.SI-ID:247448323 This link opens in a new window
Publication date in RUL:21.08.2025
Views:192
Downloads:40
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Classification of animal sounds from wetlands using few-shot learning
Abstract:
In this thesis, we address the problem of automatic classification of animal sounds from wetlands in conditions with limited labeled data. We applied few-shot and self-supervised learning approaches and evaluated three modern models (CLAP, BYOL-A, and M2D) for recognizing the vocalizations of the frog \textit{Rana dalmatina} in both aerial and underwater recordings. The M2D model achieved the best performance, and further training on unlabeled data increased the F1-score from 0.902 to 0.934. To better organize the large amount of data, we employed clustering using the HDBSCAN algorithm and visualization with UMAP, enabling efficient analysis and interpretation of unlabeled audio representations.

Keywords:bioacoustics, few-shot learning, self-supervised learning, sound classification, clustering

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back