Details

Catmull-Romovi zlepki : delo diplomskega seminarja
ID Švigelj, Nina (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,07 MB)
MD5: 1F1675FF4678364495B072A38C9F8803

Abstract
Catmull-Romove krivulje so pomembno in pogosto uporabljano orodje v računalniški grafiki in geometrijskem oblikovanju. Te krivulje so vizualno gladke, interpolirajo dane kontrolne točke ter imajo lokalno podporo. V nalogi so definirane s pomočjo Lagrangeevih baznih polinomov in B-zlepkov, predstavljen pa je tudi Barry-Goldmanov rekurzivni algoritem, s katerim lahko učinkovito izračunamo točke na krivulji. Predvsem se posvetimo kubičnim Catmull-Romovim zlepkom in podrobneje raziščemo njihove lastnosti. Analiziramo tudi vpliv različnih parametrizacij (enakomerna, centripetalna, tetivna) na njihovo obliko. S pomočjo pretvorbe v Bézierjevo obliko pokažemo, da se pri centripetalni parametrizaciji na posameznem odseku zlepka ne morejo pojaviti samopresečišča in špice.

Language:Slovenian
Keywords:Catmull-Romovi zlepki, Barry-Goldmanov algoritem, parametrizacija, interpolacija, samopresečišča, špice
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171135 This link opens in a new window
UDC:519.6
COBISS.SI-ID:246083075 This link opens in a new window
Publication date in RUL:08.08.2025
Views:287
Downloads:91
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Catmull-Rom splines
Abstract:
Catmull-Rom curves are an important and frequently used tool in computer graphics and geometric modeling. These curves are visually smooth, interpolate the given control points, and have local support. In this work, they are defined through Lagrange basis polynomials and B-splines, and we also present the Barry–Goldman recursive algorithm for efficient point computation on the curve. The focus is primarily on cubic Catmull–Rom splines, with a detailed investigation of their properties. We also analyze how different parameterizations (uniform, centripetal, chordal) influence the shape of the curves. By converting the spline segments into Bézier form, we demonstrate that with centripetal parametrization, self-intersections and cusps cannot occur within an individual segment of the spline.

Keywords:Catmull–Rom splines, Barry–Goldman algorithm, parameterization, interpolation, self-intersections, cusps

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back