Podrobno

Identifikacija bioloških označevalcev za zgodnje odkrivanje anoreksije, juvenilnega artritisa, tikov in endometrioze na podlagi urinskega metaboloma
ID Perme, Tinkara (Avtor), ID Stres, Blaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (4,09 MB)
MD5: 519BDA8B6F8A6BF8E4EAF61ED9437DA3

Izvleček
V magistrskem delu smo raziskovali možnost zgodnjega odkrivanja anoreksije, juvenilnega idiopatskega artritisa (JIA), tikov in endometrioze na podlagi urinskega metaboloma. Skupno smo analizirali 489 urinskih vzorcev, pridobljenih od 24 oseb z anoreksijo, 36 z JIA, 44 s tiki, 11 z endometriozo in 71 zdravih posameznikov. Vzorce smo izmerili z metodo 1H NMR, spektre pa smo obdelali s programom Chenomx. Po kvantifikaciji 338 metabolitov smo s pomočjo orodja MetaboAnalyst identificirali presnovne poti in metabolite, ki se pri posamezni bolezni statistično značilno razlikujejo od zdravih posameznikov. Pri anoreksiji so bile najizrazitejše spremembe v metabolizmu purinov, galaktoze in v Krebsovem ciklu, pri JIA v metabolizmu manoze in fruktoze, tirozina in galaktoze, pri tikih v metabolizmu pirimidinov, fruktoze in manoze ter pterina, pri endometriozi pa v metabolizmu pirimidinov, amino sladkorjev in galaktoze. Na podlagi ROC analize smo za vsako bolezen predlagali nabor bioloških označevalcev, ki najbolje ločijo eno skupino od drugih. Z uporabo naključnega gozda smo razvili klasifikacijski model, ki je na podlagi celotnega metabolnega profila in metapodatkov (starost, spol, indeks telesne mase, pH in prevodnost urina) omogočil razlikovanje med petimi skupinami s točnostjo 0,90. Med najpomembnejšimi napovednimi spremenljivkami so bili poleg metapodatkov še 2-furoat, trehaloza, manoza in cinamat. Rezultati kažejo, da urinski metabolom omogoča identifikacijo novih bioloških označevalcev in razvoj presejalnih modelov za zgodnje odkrivanje izbranih bolezni.

Jezik:Slovenski jezik
Ključne besede:biološki označevalci, neprenosljive bolezni, 1H-NMR, urinski metabolom, netarčna analiza, klasifikacijski model
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:BF - Biotehniška fakulteta
Leto izida:2025
PID:20.500.12556/RUL-170986 Povezava se odpre v novem oknu
COBISS.SI-ID:243860739 Povezava se odpre v novem oknu
Datum objave v RUL:25.07.2025
Število ogledov:239
Število prenosov:61
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Identification of biomarkers for early detection of anorexia, juvenile arthritis, tics, and endometriosis based on urine metabolomics
Izvleček:
In this Master's thesis, we investigated the potential for early detection of anorexia, juvenile idiopathic arthritis (JIA), tics, and endometriosis based on the urinary metabolome. In total, we analysed 489 urine samples obtained from 24 individuals with anorexia, 36 with JIA, 44 with tics, 11 with endometriosis, and 71 healthy controls. The samples were measured using the 1H NMR method, and the spectra were processed with Chenomx software. Following quantification of 338 metabolites, we used the MetaboAnalyst tool to identify metabolic pathways and metabolites that show statistically significant differences between each disease group and healthy individuals. In anorexia, the most pronounced changes were observed in purine metabolism, galactose metabolism, and the Krebs cycle; in JIA, in mannose and fructose metabolism, tyrosine, and galactose; in tics, in pyrimidine, fructose and mannose metabolism, and pterin; and in endometriosis, in pyrimidine, amino sugar, and galactose metabolism. Based on ROC analysis, we proposed biological markers for each disease that best distinguish one group from the others. Using the random forest algorithm, we developed a classification model which, based on the complete metabolic profile and metadata (age, sex, body mass index, urine pH and conductivity), enabled differentiation between the five groups with an accuracy of 0.90. Among the most important predictive variables, in addition to metadata, were 2-furoate, trehalose, mannose, and cinnamate. The results indicate that the urinary metabolome enables identification of novel biological markers and the development of screening models for early detection of selected diseases.

Ključne besede:biomarkers, non-communicable diseases, 1H-NMR, urinary metabolome, untargeted analysis, classification model

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj