Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Enhanced strain gradient crystal plasticity theory : evolution of the length scale during deformation
ID
Lame Jouybari, Amirhossein
(
Avtor
),
ID
El Shawish, Samir
(
Avtor
),
ID
Cizelj, Leon
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(9,61 MB)
MD5: D26CDFB927270D37757F47A07FA23460
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S074964192500110X
Galerija slik
Izvleček
An Enhanced Strain Gradient Crystal Plasticity (Enhanced-SGCP) theory, based on the quadratic energy contribution of the Nye tensor, is developed within a thermodynamically consistent framework to accurately capture shear band formation in terms of slip and kink bands within the microstructure. The higher-order modulus in the theory is intrinsically linked to the evolving microstructural properties during applied loading, introducing a physical length scale that governs shear band formation and evolution. It is demonstrated that the Classical-SGCP model (a Gurtin-type nonlocal theory) leads to an increasing width of localization bands, which eventually disappear, resulting in homogeneous deformation within the microstructure. This effect arises from the excessive annihilation of geometrically necessary dislocations, which suppresses localization and may lead to physically meaningless results in the formation of shear bands. To address this issue, the proposed Enhanced-SGCP theory effectively preserves the shear band width and maintains localization throughout the loading process by reducing the higher-order modulus associated with the sweeping away of hardening defects and local softening mechanism. Furthermore, the theory establishes a direct link between lattice curvature in kink bands and the Nye tensor, demonstrating that the kink bands transform into slip bands. Consequently, the Enhanced-SGCP theory breaks the equivalence between slip and kink bands, providing a more accurate physical representation of strain localization mechanisms in irradiated materials. To computationally solve the governing balance equations, a fixed-point algorithm based on the fast Fourier Transform (FFT) method is developed. To validate the algorithm, an analytical solution for the Enhanced-SGCP theory is derived. High-resolution single-crystal simulations confirm that the kink bands transition into regularized slip bands through different physical length scales within the proposed Enhanced-SGCP framework. Furthermore, highresolution simulations are performed on two-dimensional and three-dimensional polycrystalline aggregates, considering different length scales and various higher-order interface conditions at the grain boundaries. The results reveal that the strain gradient effects during applied loading are saturated and stabilized by the Enhanced-SGCP theory, ensuring sustained localization. These findings highlight the capability of the proposed Enhanced-SGCP theory and the developed FFT-algorithm to provide a robust and physically consistent framework for modeling strain localization in crystalline materials. The proposed model offers significant improvements over classical approaches, particularly in preserving localization phenomena and accurately describing the interplay between slip and kink bands.
Jezik:
Angleški jezik
Ključne besede:
shear band
,
grain boundary
,
polycrystalline material
,
fast Fourier transform method
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
33 str.
Številčenje:
Vol. 190, art. 104351
PID:
20.500.12556/RUL-169462
UDK:
621.039
ISSN pri članku:
0749-6419
DOI:
10.1016/j.ijplas.2025.104351
COBISS.SI-ID:
237457411
Datum objave v RUL:
29.05.2025
Število ogledov:
295
Število prenosov:
63
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
International journal of plasticity
Skrajšan naslov:
Int. j. plast.
Založnik:
Elsevier
ISSN:
0749-6419
COBISS.SI-ID:
25658880
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
jedrska tehnika
,
polikristalini
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0026
Naslov:
Reaktorska tehnika
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Program financ.:
Young researchers
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj