Details

Preureditve pogojno konvergentnih številskih vrst : magistrsko delo
ID Vlah, Barbara (Author), ID Starčič, Tadej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (340,33 KB)
MD5: 2B189A4DC33C0A545FDD39D73E10EBA8

Abstract
V magistrskem delu bomo obravnavali pogojno konvergentne neskončne številske vrste. Zanimalo nas bo, kako in kdaj vrstni red seštevanja členov take številske vrste vpliva na samo vsoto. Za pogojno konvergentne vrste z realnimi členi velja Riemannov izrek, ki nam pove, da je lahko pri ustrezni preureditvi vsota vrste poljubno število. Pogledali si bomo nekaj konkretnih preureditev in pripadajočih vsot alternirajoče harmonične številske vrste ter Schlömilchov in Pringsheimov izrek za alternirajoče številske vrste. V kompleksnem primeru pa bomo preštudirali zahtevnejši Lévy–Steinitzov izrek, ki pravi, da so možne vsote bodisi števila na neki premici v kompleksni ravnini bodisi celotna kompleksna ravnina.

Language:Slovenian
Keywords:Številska vrsta, absolutna konvergenca, pogojna konvergenca, preureditev vrste, Riemannov izrek, Schlömilchov izrek, Pringsheimov izrek, Lévy–Steinitzov izrek, matematika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:B. Vlah
Year:2025
Number of pages:57 str.
PID:20.500.12556/RUL-169178 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:236282371 This link opens in a new window
Publication date in RUL:16.05.2025
Views:291
Downloads:29
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Rearrangements of conditionally convergent series
Abstract:
In the master's thesis we will discuss conditionally convergent infinite number series. We will look at how and when the order of the summation terms of such a number series affects the sum itself. For conditionally convergent series with real terms, Riemann series theorem tells us that with appropriate rearrangement the sum of the series can be an arbitrary number. We will examine some specific rearrangements and corresponding sums of alternating harmonic series, the Schlömilch theorem and the Pringsheim theorem for alternating series. In a complex case, we will study the more challenging Lévy–Steinitz theorem, which says that the set of all possible sums is either a line in a complex plane or the entire complex plane.

Keywords:number series, absolute covergence, conditional convergence, rearrangement of series, Riemann series theorem, Schlömilch theorem, Pringsheim theorem, Lévy–Steinitz theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back