Podrobno

Polynomial regression-based predictive expert system for enhancing hydraulic press performance over a 5g network
ID Jankovič, Denis (Avtor), ID Pipan, Miha (Avtor), ID Šimic, Marko (Avtor), ID Herakovič, Niko (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (13,89 MB)
MD5: EE21DC3F5B64295C0D55AF3036C878A4
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2076-3417/14/24/12016 Povezava se odpre v novem oknu

Izvleček
In industrial applications, hydraulic presses maintain workloads by controlling the hydraulic cylinder to extend and retract, ensuring optimum tracking performance in terms of position and force. Dealing with nonlinear and multinode systems, such as hydraulic systems, often requires an advanced approach that frequently includes machine learning and artificial intelligence methods. Introducing an adaptive control system to significantly improve the response of hydraulic presses is a challenge. Therefore, a polynomial regression model predictive control (PR-MPC) mechanism is proposed in this paper to compensate for external disturbances such as the forming processes and friction dynamics. Using polynomial regression modeling and least squares optimization, the approach produces highly accurate data-driven models with an R2 value of 0.948 to 0.999. The simplicity of polynomial regression facilitates the integration of smart algorithms into an expert system with additional decision-making rules. Remote adaptive control integrated within a 5G network is based on I 4.0 distributed system guidelines that provide insights into the behavior of the hydraulic press. The results of real-time experiments have shown that the PR-MPC mechanism integrated into the expert system reduces the absolute response error of the hydraulic press by up to 98.7% compared to the initial control system with a PID regulation.

Jezik:Angleški jezik
Ključne besede:hydraulic press, artificial intelligence, polynomial regression modeling, expert systems, decision-making, remote control, 5G network
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:24 str.
Številčenje:Vol. 14, iss. 24, [art. no.] 12016
PID:20.500.12556/RUL-166190 Povezava se odpre v novem oknu
UDK:004.8
ISSN pri članku:2076-3417
DOI:10.3390/app142412016 Povezava se odpre v novem oknu
COBISS.SI-ID:220374019 Povezava se odpre v novem oknu
Datum objave v RUL:24.12.2024
Število ogledov:188
Število prenosov:49
Metapodatki:XML DC-XML DC-RDF
:
JANKOVIČ, Denis, PIPAN, Miha, ŠIMIC, Marko in HERAKOVIČ, Niko, 2024, Polynomial regression-based predictive expert system for enhancing hydraulic press performance over a 5g network. Applied sciences [na spletu]. 2024. Vol. 14, no. 24,  12016. [Dostopano 3 april 2025]. DOI 10.3390/app142412016. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=166190
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied sciences
Skrajšan naslov:Appl. sci.
Založnik:MDPI
ISSN:2076-3417
COBISS.SI-ID:522979353 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J2-4470
Naslov:Raziskave zanesljivosti in učinkovitosti računanja na robu v pametni tovarni z uporabo tehnologij 5G

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0248
Naslov:Inovativni izdelovalni sistemi in procesi

Financer:EC - European Commission
Program financ.:Horizon 2020
Številka projekta:101087348
Naslov:Strengthening the capacity for excellence of Slovenian and Croatian innovation ecosystems to support the digital and green transitions of maritime regions
Akronim:INNO2MARE

Financer:EC - European Commission
Program financ.:Horizon 2020
Številka projekta:101058693
Naslov:Sustainable Transition to the Agile and Green Enterprise
Akronim:STAGE

Podobna dela

Podobna dela v RUL:
  1. Pridobivanje lesa
  2. Opremljenost in uporaba osebne varovalne opreme zasebnih lastnikov gozdov na območju KE Ptuj
  3. Primerjava obremenitve sekača s tresenjem pri sečnji mlajših sestojev iglavcev z akumulatorsko (Makita DUC302Z) in bencinsko motorno žago (Makita EA3200S35B)
  4. Opremljenost lastnikov gozdov pri sečnji v Gozdnogospodarski enoti Tolmin
  5. Pridobivanje lesa
Podobna dela v drugih slovenskih zbirkah:
  1. Uporaba Johnsonovega algoritma pri planiranju proizvodnje pridobivanja lesa

Nazaj