izpis_h1_title_alt

Avtomatizirano določanje optimalnega števila komponent pri analizi ritmičnih podatkov z modelom cosinor
ID Kocmut, Urban (Author), ID Moškon, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,39 MB)
MD5: 20ADE4AA64A527F2E1A08D6AF3B7E903

Abstract
Obravnavali smo problematiko analize ritmičnih podatkov. Predstavili smo različne pristope analize ritmičnih podatkov. Posebej smo se osredotočili na model Cosinor, njegove variante in povezavo z linearno regresijo in njenimi variacijami. Predstavili smo tri modele (Ridge, Lasso, ElasticNet) za določanje optimalnega števila komponent z uporabo modela Cosinor. Modele smo podrobno testirali na sintetičnih podatkih glede na različne parametre in demonstrirali uporabnost na realnih podatkih. Ugotovili smo, da sta modela Lasso in ElasticNet najbolj primerna za določanje optimalnega števila period, saj najbolj agresivno odstranjujeta komponente. Pri vseh modelih je pomembna tudi parametrizacija, saj različne vrednosti parametra močno vplivajo na rezultate.

Language:Slovenian
Keywords:cosinor, regresija, analiza časovnih vrst
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-164937 This link opens in a new window
Publication date in RUL:18.11.2024
Views:25
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automated identification of optimal number of components for the analysis of rhythmic data using the cosinor model
Abstract:
We addressed the issue of rhythmic data analysis. We presented various approaches for analysis of rhythmic data. We specifically focused on the Cosinor model, its variations, and its connection with linear regression. We introduced three models (Ridge, Lasso, ElasticNet) for determining the optimal number of components using the Cosinor model. We thoroughly tested these models on synthetic data according to different parameters and demonstrated their applicability on real data. We found that the Lasso and ElasticNet models are most suitable for determining the optimal number of periods, as they most aggressively remove period components. Parameterization is also important in all models, as different parameter values significantly impact the results.

Keywords:cosinor, regression, time series analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back