Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
DentAge : deep learning for automated age prediction using panoramic dental X-ray images
ID
Bizjak, Žiga
(
Avtor
),
ID
Robič, Tina
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,31 MB)
MD5: 1D5CD4C8E701699249FA88ECFF9C3FCC
URL - Izvorni URL, za dostop obiščite
https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15629
Galerija slik
Izvleček
Age estimation plays a crucial role in various fields, including forensic science and anthropology. This study aims to develop and validate DentAge, a deep-learning model for automated age prediction using panoramic dental X-ray images. DentAge was trained on a dataset comprising 21,007 panoramic dental X-ray images sourced from a private dental center in Slovenia. The dataset included subjects aged 4 to 97 years with various dental conditions. Transfer learning was employed, initializing the model with ImageNet weights and fine-tuning on the dental image dataset. The model was trained using stochastic gradient descent with momentum, and mean absolute error (MAE) served as the objective function. Across the test dataset, DentAge achieved an MAE of 3.12 years, demonstrating its efficacy in age prediction. Notably, the model performed well across different age groups, with MAEs ranging from 1.94 (age group [10–20]) to 13.40 years (age group [90–100]). Visual evaluation revealed factors contributing to prediction errors, including prosthetic restorations, tooth loss, and bone resorption. DentAge represents a significant advancement in automated age prediction within dentistry. The model's robust performance across diverse age groups and dental conditions underscores its potential utility in real-world scenarios. Our model will be accessible to the public for further adjustments and validation, ensuring DentAge's effectiveness and trustworthiness in practical scenarios.
Jezik:
Angleški jezik
Ključne besede:
age estimation
,
deep learning
,
dental imaging
,
panoramic dental X-ray
,
ResNet
,
transfer learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 2069-2074
Številčenje:
Vol. 69, iss. 6
PID:
20.500.12556/RUL-164606
UDK:
004.93:616-073.7:616.314
ISSN pri članku:
1556-4029
DOI:
10.1111/1556-4029.15629
COBISS.SI-ID:
208221955
Datum objave v RUL:
05.11.2024
Število ogledov:
69
Število prenosov:
14
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of forensic sciences
Založnik:
Wiley, American Academy of Forensic Sciences
ISSN:
1556-4029
COBISS.SI-ID:
515028249
Licence
Licenca:
CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:
Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
ocenjevanje starosti
,
globoko učenje
,
slikanje zob
,
panoramski rentgen
,
ResNet
,
prenos znanja
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0232
Naslov:
Analiza biomedicinskih slik in signalov
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
J2-3059
Naslov:
Sprotno prilagajanje načrta protonske in radioterapije
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj