izpis_h1_title_alt

Looking for optimal maps of soil properties at the regional scale
ID Barrena‑González, Jesús (Avtor), ID Repe, Blaž (Avtor)

URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s41742-024-00611-8?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240527&utm_content=10.1007%2Fs41742-024-00611-8 Povezava se odpre v novem oknu
.pdfPDF - Predstavitvena datoteka, prenos (3,09 MB)
MD5: CE84FD4ACAD6305E0F06AC3521F40874

Izvleček
Around 70% of surface in Extremadura, Spain, faces a critical risk of degradation processes, highlighting the necessity for regional-scale soil property mapping to monitor degradation trends. This study aimed to generate the most reliable soil property maps, employing the most accurate methods for each case. To achieve this, six diferent machine learning (ML) techniques were tested to map nine soil properties across three depth intervals (0–5, 5–10 and>10 cm). Additionally, 22 environmental covariates were utilized as inputs for model performance. Results revealed that the Random Forest (RF) model exhibited the highest precision, followed by Cubist, while Support Vector Machine showed efectiveness with limited data availability. Moreover, the study highlighted the infuence of sample size on model performance. Concerning environmental covariates, vegetation indices along with selected topographic indices proved optimal for explaining the spatial distribution of soil physical properties, whereas climatic variables emerged as crucial for mapping the spatial distribution of chemical properties and key nutrients at a regional scale. Despite providing an initial insight into the regional soil property distribution using Around 70% of surface in Extremadura, Spain, faces a critical risk of degradation processes, highlighting the necessity for regional-scale soil property mapping to monitor degradation trends. This study aimed to generate the most reliable soil property maps, employing the most accurate methods for each case. To achieve this, six diferent machine learning (ML) techniques were tested to map nine soil properties across three depth intervals (0–5, 5–10 and>10 cm). Additionally, 22 environmental covariates were utilized as inputs for model performance. Results revealed that the Random Forest (RF) model exhibited the highest precision, followed by Cubist, while Support Vector Machine showed efectiveness with limited data availability. Moreover, the study highlighted the infuence of sample size on model performance. Concerning environmental covariates, vegetation indices along with selected topographic indices proved optimal for explaining the spatial distribution of soil physical properties, whereas climatic variables emerged as crucial for mapping the spatial distribution of chemical properties and key nutrients at a regional scale. Despite providing an initial insight into the regional soil property distribution using ML, future work is warranted to ensure a robust, up-to-date, and equitable database for accurate monitoring of soil degradation processes arising from various land uses. ML, future work is warranted to ensure a robust, up-to-date, and equitable database for accurate monitoring of soil degradation processes arising from various land uses.

Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FF - Filozofska fakulteta
Datum objave:01.05.2024
Leto izida:2024
Št. strani:22 str.
Številčenje:Vol. 18, article no.ǂ 60
PID:20.500.12556/RUL-164539 Povezava se odpre v novem oknu
UDK:528:004+631.4
ISSN pri članku:2008-2304
DOI:10.1007/s41742-024-00611-8 Povezava se odpre v novem oknu
COBISS.SI-ID:197906947 Povezava se odpre v novem oknu
Datum objave v RUL:30.10.2024
Število ogledov:54
Število prenosov:0
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:International journal of environmental research
Skrajšan naslov:Int. j. environ. res.
Založnik:University of Tehran, Graduate Faculty of Environment
ISSN:2008-2304
COBISS.SI-ID:114568451 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:geografski informacijski sistemi, daljinsko zaznavanje, pedološke karte, varstvo tal, Španija, Ekstremadura

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj