Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Looking for optimal maps of soil properties at the regional scale
ID
Barrena‑González, Jesús
(
Avtor
),
ID
Repe, Blaž
(
Avtor
)
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s41742-024-00611-8?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240527&utm_content=10.1007%2Fs41742-024-00611-8
PDF - Predstavitvena datoteka,
prenos
(3,09 MB)
MD5: CE84FD4ACAD6305E0F06AC3521F40874
Galerija slik
Izvleček
Around 70% of surface in Extremadura, Spain, faces a critical risk of degradation processes, highlighting the necessity for regional-scale soil property mapping to monitor degradation trends. This study aimed to generate the most reliable soil property maps, employing the most accurate methods for each case. To achieve this, six diferent machine learning (ML) techniques were tested to map nine soil properties across three depth intervals (0–5, 5–10 and>10 cm). Additionally, 22 environmental covariates were utilized as inputs for model performance. Results revealed that the Random Forest (RF) model exhibited the highest precision, followed by Cubist, while Support Vector Machine showed efectiveness with limited data availability. Moreover, the study highlighted the infuence of sample size on model performance. Concerning environmental covariates, vegetation indices along with selected topographic indices proved optimal for explaining the spatial distribution of soil physical properties, whereas climatic variables emerged as crucial for mapping the spatial distribution of chemical properties and key nutrients at a regional scale. Despite providing an initial insight into the regional soil property distribution using Around 70% of surface in Extremadura, Spain, faces a critical risk of degradation processes, highlighting the necessity for regional-scale soil property mapping to monitor degradation trends. This study aimed to generate the most reliable soil property maps, employing the most accurate methods for each case. To achieve this, six diferent machine learning (ML) techniques were tested to map nine soil properties across three depth intervals (0–5, 5–10 and>10 cm). Additionally, 22 environmental covariates were utilized as inputs for model performance. Results revealed that the Random Forest (RF) model exhibited the highest precision, followed by Cubist, while Support Vector Machine showed efectiveness with limited data availability. Moreover, the study highlighted the infuence of sample size on model performance. Concerning environmental covariates, vegetation indices along with selected topographic indices proved optimal for explaining the spatial distribution of soil physical properties, whereas climatic variables emerged as crucial for mapping the spatial distribution of chemical properties and key nutrients at a regional scale. Despite providing an initial insight into the regional soil property distribution using ML, future work is warranted to ensure a robust, up-to-date, and equitable database for accurate monitoring of soil degradation processes arising from various land uses. ML, future work is warranted to ensure a robust, up-to-date, and equitable database for accurate monitoring of soil degradation processes arising from various land uses.
Jezik:
Angleški jezik
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FF - Filozofska fakulteta
Datum objave:
01.05.2024
Leto izida:
2024
Št. strani:
22 str.
Številčenje:
Vol. 18, article no.ǂ 60
PID:
20.500.12556/RUL-164539
UDK:
528:004+631.4
ISSN pri članku:
2008-2304
DOI:
10.1007/s41742-024-00611-8
COBISS.SI-ID:
197906947
Datum objave v RUL:
30.10.2024
Število ogledov:
54
Število prenosov:
0
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
International journal of environmental research
Skrajšan naslov:
Int. j. environ. res.
Založnik:
University of Tehran, Graduate Faculty of Environment
ISSN:
2008-2304
COBISS.SI-ID:
114568451
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
geografski informacijski sistemi
,
daljinsko zaznavanje
,
pedološke karte
,
varstvo tal
,
Španija
,
Ekstremadura
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj