izpis_h1_title_alt

Posplošeni Gauss-Bonnetov izrek : magistrsko delo
ID Gladek, Žiga (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window, ID Kališnik, Jure (Comentor)

.pdfPDF - Presentation file, Download (698,00 KB)
MD5: D9017F76F140EE7911BA322286404ABD

Abstract
V delu dokažemo posplošitev klasičnega Gauss-Bonnetovega izreka, ki vzpostavlja presenetljivo zvezo med ukrivljenostjo in topologijo orientabilne sklenjene gladke ploskve. Izkaže se, da prava posplošitev tega izreka obstaja le v sodih dimenzijah, vendar pa metode, ki delujejo v dimenziji $2$, še zdaleč niso zadosti za dokaz te splošnejše izjave. V ta namen je velika večina dela namenjena pripravi na dokaz tega izreka, spotoma pa spoznamo veliko zanimive teorije, ki je uporabna tudi v širšem kontekstu. Na poti do tja namreč obdelamo osnove Riemannove geometrije, spoznamo pojem povezave v modernejšem okolju glavnih svežnjev in se dotaknemo teorije karakterističnih razredov, ko v gladkem kontekstu definiramo Eulerjev razred vektorskega svežnja. V zvezi s slednjim obravnavamo še en klasični izrek: Poincaré-Hopfov izrek o indeksu, ki v dokazu glavnega izreka igra ključno vlogo.

Language:Slovenian
Keywords:Riemannova mnogoterost, Riemannova metrika, povezava, ukrivljenost, glavni svežnji, Thomov razred, Eulerjev razred, Pfaffian.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-164473 This link opens in a new window
UDC:514.7
COBISS.SI-ID:213001731 This link opens in a new window
Publication date in RUL:26.10.2024
Views:51
Downloads:22
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The generalized Gauss-Bonnet theorem
Abstract:
In this thesis, we prove a generalization of the classic Gauss-Bonnet theorem, which establishes a surprising link between the curvature and the topology of an orientable closed smooth surface. It turns out that a true generalization of this theorem is only possible in even dimensions, however the methods that work in dimension $2$ are far from being enough to prove this more general statement. To this end, a vast majority of this work is dedicated to preparation for the proof of the main theorem, and during this, a lot of interesting theory that is useful in a broader context is developed. For example, we develop the basics of Riemannian geometry, learn about connections in the more modern environment of principal bundles, and touch upon the theory of characteristic classes when we define the Euler class in the context of smooth vector bundles. Here we also discuss another classic theorem: the Poincaré-Hopf index theorem, which is, in fact, of crucial importance in the proof of the main theorem.

Keywords:Riemannian manifold, Riemannian metric, connection, curvature, principal bundles, Thom class, Euler class, Pfaffian.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back