izpis_h1_title_alt

A novel FuseDecode Autoencoder for industrial visual inspection : incremental anomaly detection improvement with gradual transition from unsupervised to mixed-supervision learning with reduced human effort
ID Kozamernik, Nejc (Avtor), ID Bračun, Drago (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (16,57 MB)
MD5: 3556BE277CC1302C49EAE24A9F086A96
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S016636152400126X Povezava se odpre v novem oknu

Izvleček
The industrial implementation of automated visual inspection leveraging deep learning is limited due to the labor-intensive labeling of datasets and the lack of datasets containing images of defects, which is especially the case in high-volume manufacturing with zero defect constraints. In this study, we present the FuseDecode Autoencoder (FuseDecode AE), a novel reconstruction-based anomaly detection model featuring incremental learning. Initially, the FuseDecode AE operates in an unsupervised manner on noisy data containing predominantly normal images and a small number of anomalous images. The predictions generated assist experts in distinguishing between normal and anomalous samples. Later, it adapts to weakly labeled datasets by retraining in a semi-supervised manner on normal data augmented with synthetic anomalies. As more real anomalous samples become available, the model further refines its capabilities through mixed-supervision learning on both normal and anomalous samples. Evaluation on a real industrial dataset of coating defects shows the effectiveness of the incremental learning approach. Furthermore, validation on the publicly accessible MVTec AD dataset demonstrates the FuseDecode AE's superiority over other state-of-the-art reconstruction-based models. These findings underscore its generalizability and effectiveness in automated visual inspection tasks, particularly in industrial settings.

Jezik:Angleški jezik
Ključne besede:automated visual inspection, deep learning, anomaly detection, unsupervised learning, semi-supervised learning, mixed supervision learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:19 str.
Številčenje:Vol. 164, art. 104198
PID:20.500.12556/RUL-164447 Povezava se odpre v novem oknu
UDK:004.9
ISSN pri članku:0166-3615
DOI:10.1016/j.compind.2024.104198 Povezava se odpre v novem oknu
COBISS.SI-ID:212951555 Povezava se odpre v novem oknu
Datum objave v RUL:25.10.2024
Število ogledov:47
Število prenosov:21
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers in industry
Skrajšan naslov:Comput. ind.
Založnik:North-Holland, Elsevier
ISSN:0166-3615
COBISS.SI-ID:528402 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:avtomatiziran vizualni nadzor, globoko učenje, iskanje anomalij, nenadzorovano učenje, pol-nadzorovano učenje, učenje z mešanim nadzorom

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2–0270
Naslov:Proizvodni sistemi
Akronim:PTS

Financer:Drugi - Drug financer ali več financerjev
Program financ.:HIBRIDNE TEHNOLOGIJE TOVARN PRIHODNOSTI ZA ZELENI PREHOD
Številka projekta:3360-24-3113, RDP1
Naslov:GREENTECH

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj