izpis_h1_title_alt

Razumevanje pomena enačaja v postopku reševanja enačb med učenci 5. razreda : magistrsko delo
ID Stele, Jana (Avtor), ID Manfreda Kolar, Vida (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,13 MB)
MD5: DAD499F6DB6202870CFB617E6C8B2E07

Izvleček
Magistrsko delo obravnava uspešnost učencev pri reševanju enačb in njihovo razumevanje enačaja v postopku reševanja. Enačbe so ena izmed prvih tem algebre, ki se pojavijo pri pouku matematike. To je osnova za nadaljnje učenje, zato smo preverili, kakšno je znanje učencev ob koncu razredne stopnje. V teoretičnem delu so najprej predstavljena vodila za učenje in stopnje otrokovega razvoja. Sledijo osnovni pojmi, povezani z reševanjem enačb, ki jih spoznajo učenci v osnovni šoli, in pregled načinov reševanja, ki so primerni za poučevanje na razredni stopnji. Predstavljeno je reševanje s premislekom, z diagramom in s preglednico. Poleg tega sta podrobneje opisana dva modela, ki poskušata prikazati abstraktni proces reševanja enačbe (model tehtnice in številska os), ter ovrednotena njuna učinkovitost. Na koncu sledi pregled dosedanjih izsledkov raziskav na področju reševanja enačb in algebrskega mišljenja, ki kažejo na težave učencev pri razumevanju simbolnega zapisa, enakosti in reševanja enačb na eni strani ter uspešnost mlajših učencev pri reševanju algebrskih problemov ob ustreznem vodenju na drugi strani. V empiričnem delu smo preverili, kako med postopkom reševanja enačbe razmišljajo učenci 5. razreda osnovne šole. Njihovo uspešnost in proces razmišljanja smo preverili s pomočjo intervjuja ob reševanju preizkusa znanja. Naš cilj je bil ugotoviti, kako učenci razumejo enačaj in na katere težave naletijo v procesu reševanja linearnih enačb. Raziskava je temeljila na kavzalno neeksperimentalni metodi pedagoškega raziskovanja s kombinacijo kvalitativnega in kvantitativnega raziskovalnega pristopa. V raziskavo je bilo vključenih 10 učencev 5. razreda osnovne šole. Učenci so reševali preizkus znanja z vprašanji zaprtega tipa, ob tem pa smo jim s pomočjo polstrukturiranega intervjuja postavljali vprašanja, s čimer smo pridobili vpogled v razumevanje enačaja in postopkov reševanja enačb učencev ob zaključku razredne stopnje. Ugotovili smo, da učenci razumejo ohranjanje enakosti in najdejo neznano količino, kakor tudi, da na uspešnost reševanja enačb vpliva oblika zapisa neznanke in položaj enačaja v enačbi. Učenci enačaj še vedno pojmujejo kot operacijski simbol, ki kaže smer reševanja, razumejo pa, da v nekaterih primerih pomeni enakost dveh enot. Rezultati raziskave kažejo, da so učenci uspešni pri pretvarjanju matematičnega besedila v algebrski zapis, pri oblikovanju besedila glede na algebrski zapis pa imajo težave. Pričakujemo, da se bodo učitelji na podlagi rezultatov raziskave v prihodnje lahko bolj celostno lotili poučevanja enačb in že v prvem vzgojno-izobraževalnem obdobju namenili več časa utrjevanju pojmov in čim bolj raznolikim izkušnjam zapisov enakosti.

Jezik:Slovenski jezik
Ključne besede:Enačbe, enačaj, algebrsko mišljenje, neznanka, enakost, postopki reševanja enačb, matematika, osnovne šole
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:PEF - Pedagoška fakulteta
Kraj izida:Ljubljana
Založnik:J. Stele
Leto izida:2024
Št. strani:VII, 87 str.
PID:20.500.12556/RUL-163844 Povezava se odpre v novem oknu
UDK:51:37(043.2)
COBISS.SI-ID:211385347 Povezava se odpre v novem oknu
Datum objave v RUL:12.10.2024
Število ogledov:108
Število prenosov:1098
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Understanding the Meaning of the Equals Sign when Solving Equations among Grade 5 Students
Izvleček:
This master thesis deals with students' performance in solving equations and their understanding of the equation solving process. Equations are one of the first algebra topics to appear in mathematics lessons. It is the basis for further learning, so we tested students' knowledge at the end of Year 5 of primary school education. In the theoretical part, firstly, the guidelines for learning and the stages of the child's development are presented. This is followed by the basic concepts related to solving equations that pupils learn in primary school and an overview of ways of solving equations that are suitable for teaching at classroom level. Solving with reasoning, with a diagram and with a table are presented. In addition, two models that attempt to illustrate the abstract process of solving an equation (the balance model and the number axis) are described in more detail and their effectiveness is evaluated. Finally, a review of previous research findings in the area of equation solving and algebraic thinking is presented, showing the difficulties students have in understanding symbolic notation, equality and equation solving on the one hand, and the success of younger students in solving algebraic problems with appropriate guidance on the other hand. In the empirical part, we tested how primary school students in grade 5 think during the equation solving process. Their performance and reasoning process was tested by means of an interview while solving a knowledge test. Our aim was to find out how students understand the equation and what difficulties they encounter in the process of solving linear equations. The study was based on a cavalier non-experimental method of pedagogical research with a combination of qualitative and quantitative research approaches. The participants were 10 pupils in grade 5 of primary school. The students were given a closed-ended knowledge test, and at the same time, questions were asked through a semi-structured interview to gain insight into the students' understanding of equations and equation-solving procedures at the end of grade 5 of primary education. We found that students understand conservation of equality and are able to find the unknown quantity, and that the way the unknown quantity is written and the position of the equal sign in the equation affect their success in solving equations. Pupils still think of the equal sign as an operation symbol that points in the direction of the solution, but they understand that in some cases it represents the equality of two units. The results of the study show that pupils are successful in converting mathematical text into algebraic notation, but have difficulties in formulating text according to algebraic notation. We expect that, based on the results of the study, teachers will be able to take a more holistic approach to teaching equations in the future, spending more time in the first period of education to reinforce the concepts and to make the experience of equality notations as varied as possible.

Ključne besede:Equations, equation, algebraic thinking, unknown, equality, equation solving procedures

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj