izpis_h1_title_alt

Convexity in matrix spaces, extreme points and faces : doctoral thesis
ID Štrekelj, Tea (Author), ID Klep, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,07 MB)
MD5: AF4F1D5A0736986A7B703877778BF902

Abstract
This thesis investigates the notions of exposed points and (exposed) faces in the matrix convex setting. Matrix exposed points in finite dimensions were first defined by Kriel in 2019. Here this notion is extended to matrix convex sets in infinite-dimensional vector spaces. Then a connection between matrix exposed points and matrix extreme points is established: a matrix extreme point is ordinary exposed if and only if it is matrix exposed. This leads to a Krein-Milman type result for matrix exposed points that is due to Straszewicz-Klee in classical convexity: a compact matrix convex set is the closed matrix convex hull of its matrix exposed points. Moreover, with similar techniques, an even stronger result is obtained, namely that the matrix exposed points are dense in the matrix extreme points. Several notions of a fixed-level as well as a multilevel matrix face and matrix exposed face are introduced to extend the concepts of a matrix extreme point and a matrix exposed point, respectively. Their properties resemble those of (exposed) faces in the classical sense, e.g., it is shown that the $C^\ast$-extreme (matrix extreme) points of a matrix face (matrix multiface) of a matrix convex set $K$ are matrix extreme in $K$. As in the case of extreme points, any fixed-level matrix face is ordinary exposed if and only if it is a matrix exposed face. From this it follows that every fixed-level matrix face of a free spectrahedron is matrix exposed. On the other hand, matrix multifaces give rise to the noncommutative counterpart of the classical theory connecting (archimedean) faces of compact convex sets and (archimedean) order ideals of the corresponding function systems. The final part of this thesis studies several generalizations of (matrix) convexity, e.g., partial convexity or biconvexity, which are summed up in the term $\Gamma$-convexity. Here $\Gamma$ is a tuple of symmetric free polynomials determining the geometry of a $\Gamma$-convex set. The notions of $\Gamma$-operator systems and $\Gamma$-ucp maps are introduced and a Webster-Winkler type categorical duality between $\Gamma$-operator systems and $\Gamma$-convex sets is established. Next, a notion of extreme points of $\Gamma$-convex sets is introduced so that it extends the concept of a free extreme point. To ensure that such points exist, matrix (but also $\Gamma$-) convex sets are extended to include an operator level. The existence of free extreme points of the operator convex hull of $\Gamma(K)$ then guarantees existence of the so called $\Gamma$-extreme points of an operator $\Gamma$-convex set $K$. This result is key to establish a Krein-Milman theorem for $\Gamma$-convex sets. Finally, relying on the results of Helton, Klep and McCullough, a construction of an approximation scheme for the $\Gamma$-convex hull of the matricial positivity domain of a symmetric free polynomial $p$ is given. The approximation consists of a decreasing family of $\Gamma$-analogs of free spectrahedra, which under mild assumptions captures the $\Gamma$-convex hull of the matricial positivity domain of $p$.

Language:English
Keywords:matrix convex set, matrix extreme point, matrix exposed point, Krein-Milman theorem, Straszewicz-Klee theorem, matrix face, matrix exposed face, free spectrahedron, $\Gamma$-convex set, $\Gamma$-operator system, $\Gamma$-ucp map, free extreme point, $\Gamma$-extreme point
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-163763 This link opens in a new window
UDC:517.9
COBISS.SI-ID:210251267 This link opens in a new window
Publication date in RUL:10.10.2024
Views:94
Downloads:18
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Konveksnost v matričnih prostorih, ekstremne točke in lica
Abstract:
Ta disertacija raziskuje pojme izpostavljenih točk in (izpostavljenih) lic matrično konveksnih množic. Matrično izpostavljene točke v končnih dimenzijah je leta 2019 prvič definiral Kriel, v disertaciji pa je ta pojem razširjen na matrično konveksne množice v neskončno-razsežnih vektorskih prostorih. Obravnavana je korespondenca med matrično izpostavljenimi točkami in matrično ekstremnimi točkami: matrično ekstremna točka je običajna izpostavljena točka natanko tedaj, ko je matrično izpostavljena. Ta povezava vodi do rezultata tipa Krein-Milman za matrično izpostavljene točke, ki sta ga v teoriji klasične konveksnosti dokazala Straszewicz in Klee: kompaktna matrično konveksna množica je zaprta matrično konveksna ogrinjača svojih matrično izpostavljenih točk. S podobnimi tehnikami je dokazan še močnejši rezultat, namreč da so matrično izpostavljene točke goste v matrično ekstremnih točkah. V drugem delu disertacije je uvedenih več pojmov tako enonivojnih kot večnivojnih matričnih lic in matrično izpostavljenih lic, ki razširjajo pojma matrično ekstremne točke oziroma matrično izpostavljene točke. Njihove lastnosti so podobne lastnostim običajnih (izpostavljenih) lic, na primer, dokazano je, da so $C^\ast$-ekstremne (matrično ekstremne) točke matričnega lica (večnivojnega matričnega lica) matrično konveksne množice $K$ matrično ekstremne v $K$. Tako kot pri ekstremnih točkah je vsako enonivojno matrično lice izpostavljeno natanko tedaj, ko je matrično izpostavljeno lice. Iz tega sledi, da je vsako matrično lice prostega spektraedra na fiksnem nivoju matrično izpostavljeno. Po drugi strani pa večnivojna matrična lica privedejo do nekomutativnega ekvivalenta klasične teorije, ki povezuje (arhimedska) lica kompaktnih konveksnih množic in arhimedske ureditvene ideale pripadajočih funkcijskih sistemov. Zadnji del disertacije preučuje več posplošitev (matrične) konveksnosti, kot sta na primer parcialna konveksnost ali bikonveksnost. Te posplošene oblike konveksnosti so združene v izraz $\Gamma$-konveksnost. Pri tem je $\Gamma$ terica simetričnih prostih polinomov, ki določajo geometrijo $\Gamma$-konveksne množice. Uvedeni so pojmi $\Gamma$-operatorskih sistemov in unitalnih Γ-povsem pozitivnih preslikav, vzpostavljena je kategorična dualnost tipa Webster-Winkler med $\Gamma$-operatorskimi sistemi in $\Gamma$-konveksnimi množicami. V nadaljevanju je predstavljen pojem ekstremnih točk $\Gamma$-konveksnih množic, in sicer na tak način, da razširja koncept proste ekstremne točke. Da bi zagotovili obstoj takih točk, so matrično (pa tudi $\Gamma$-) konveksne množice razširjene tako, da vključujejo operatorski nivo. Obstoj prostih ekstremnih točk operatorsko konveksne ogrinjače $\Gamma(K)$ nato zagotavlja obstoj tako imenovanih $\Gamma$-ekstremnih točk operatorsko $\Gamma$-konveksne množice $K$. Ta rezultat je ključen za dokaz Krein-Milman izreka za $\Gamma$-konveksne množice. Nazadnje je na podlagi rezultatov Heltona, Klepa in McCullougha podana konstrukcija aproksimacijske sheme za $\Gamma$-konveksno ogrinjačo matrične domene pozitivnosti simetričnega prostega polinoma $p$. Aproksimacija je sestavljena iz padajoče družine $\Gamma$-analogov prostih spektraedrov in ob blagih predpostavkah zajame $\Gamma$-konveksno ogrinjačo matrične domene pozitivnosti $p$.

Keywords:matrično konveksna množica, matrično izpostavljena točka, Krein-Milman izrek, Straszewicz-Klee izrek, matrično lice, matrično izpostavljeno lice, $\Gamma$-konveksna množica, $\Gamma$-operatorski sistem, unitalna $\Gamma$-povsem pozitivna preslikava, $\Gamma$-ekstremna točka

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back