izpis_h1_title_alt

Vertex-primitive digraphs with large fixity
ID Barbieri, Marco (Author), ID Potočnik, Primož (Author)

.pdfPDF - Presentation file, Download (389,26 KB)
MD5: 9AEC1D68AA57E64097D60327BEB9BBDC
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s10231-024-01447-x This link opens in a new window

Abstract
The relative fixity of a digraph $\Gamma$ is defined as the ratio between the largest number of vertices fixed by a nontrivial automorphism of $\Gamma$ and the number of vertices of $\Gamma$. We characterize the vertex-primitive digraphs whose relative fixity is at least $1 \over 3$, and we show that there are only finitely many vertex-primitive digraphs of bounded out-valency and relative fixity exceeding a positive constant.

Language:English
Keywords:vertex-primitive digraphs, fixity, product action, graphs
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.10.2024
Year:2024
Number of pages:Str. 2383-2403
Numbering:Vol. 203, iss. 5
PID:20.500.12556/RUL-163177 This link opens in a new window
UDC:519.17
ISSN on article:0373-3114
DOI:10.1007/s10231-024-01447-x This link opens in a new window
COBISS.SI-ID:195629059 This link opens in a new window
Publication date in RUL:03.10.2024
Views:60
Downloads:6
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Annali di matematica pura ed applicata
Shortened title:Ann. mat. pura appl.
Publisher:Springer
ISSN:0373-3114
COBISS.SI-ID:24962816 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:Other - Other funder or multiple funders
Funding programme:GNSAGA INdAM group

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0216
Name:Simetrije, negibnost in prožnost grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0294
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back