Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Vertex-primitive digraphs with large fixity
ID
Barbieri, Marco
(
Author
),
ID
Potočnik, Primož
(
Author
)
PDF - Presentation file,
Download
(389,26 KB)
MD5: 9AEC1D68AA57E64097D60327BEB9BBDC
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s10231-024-01447-x
Image galllery
Abstract
The relative fixity of a digraph $\Gamma$ is defined as the ratio between the largest number of vertices fixed by a nontrivial automorphism of $\Gamma$ and the number of vertices of $\Gamma$. We characterize the vertex-primitive digraphs whose relative fixity is at least $1 \over 3$, and we show that there are only finitely many vertex-primitive digraphs of bounded out-valency and relative fixity exceeding a positive constant.
Language:
English
Keywords:
vertex-primitive digraphs
,
fixity
,
product action
,
graphs
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.10.2024
Year:
2024
Number of pages:
Str. 2383-2403
Numbering:
Vol. 203, iss. 5
PID:
20.500.12556/RUL-163177
UDC:
519.17
ISSN on article:
0373-3114
DOI:
10.1007/s10231-024-01447-x
COBISS.SI-ID:
195629059
Publication date in RUL:
03.10.2024
Views:
65
Downloads:
6
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Annali di matematica pura ed applicata
Shortened title:
Ann. mat. pura appl.
Publisher:
Springer
ISSN:
0373-3114
COBISS.SI-ID:
24962816
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Projects
Funder:
Other - Other funder or multiple funders
Funding programme:
GNSAGA INdAM group
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0216
Name:
Simetrije, negibnost in prožnost grafov
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0294
Name:
Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back