Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Analysis of brain age gap across subject cohorts and prediction model architectures
ID
Dular, Lara
(
Avtor
),
ID
Špiclin, Žiga
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,01 MB)
MD5: CBB5848C190B8C94B0E593DF9868AAC9
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2227-9059/12/9/2139
Galerija slik
Izvleček
Background: Brain age prediction from brain MRI scans and the resulting brain age gap (BAG)—the difference between predicted brain age and chronological age—is a general biomarker for a variety of neurological, psychiatric, and other diseases or disorders. Methods: This study examined the differences in BAG values derived from T1-weighted scans using five state-of-the-art deep learning model architectures previously used in the brain age literature: 2D/3D VGG, RelationNet, ResNet, and SFCN. The models were evaluated on healthy controls and cohorts with sleep apnea, diabetes, multiple sclerosis, Parkinson’s disease, mild cognitive impairment, and Alzheimer’s disease, employing rigorous statistical analysis, including repeated model training and linear mixed-effects models. Results: All five models consistently identified a statistically significant positive BAG for diabetes (ranging from 0.79 years with RelationNet to 2.13 years with SFCN), multiple sclerosis (2.67 years with 3D VGG to 4.24 years with 2D VGG), mild cognitive impairment (2.13 years with 2D VGG to 2.59 years with 3D VGG), and Alzheimer’s dementia (5.54 years with ResNet to 6.48 years with SFCN). For Parkinson’s disease, a statistically significant BAG increase was observed in all models except ResNet (1.30 years with 2D VGG to 2.59 years with 3D VGG). For sleep apnea, a statistically significant BAG increase was only detected with the SFCN model (1.59 years). Additionally, we observed a trend of decreasing BAG with increasing chronological age, which was more pronounced in diseased cohorts, particularly those with the largest BAG, such as multiple sclerosis (−0.34 to −0.2), mild cognitive impairment (−0.37 to −0.26), and Alzheimer’s dementia (−0.66 to −0.47), compared to healthy controls (−0.18 to −0.1). Conclusions: Consistent with previous research, Alzheimer’s dementia and multiple sclerosis exhibited the largest BAG across all models, with SFCN predicting the highest BAG overall. The negative BAG trend suggests a complex interplay of survival bias, disease progression, adaptation, and therapy that influences brain age prediction across the age spectrum.
Jezik:
Angleški jezik
Ključne besede:
magnetnoresonančno slikanje
,
napovedovanje možganske starosti
,
globoki regresijski modeli
,
analiza starostnega primanjkljaja
,
primerjalna študija
,
kvantitativno vrednotenje
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
17 str.
Številčenje:
Vol. 12, iss. 9, art. 2139
PID:
20.500.12556/RUL-162565
UDK:
004.93:616.8
ISSN pri članku:
2227-9059
DOI:
10.3390/biomedicines12092139
COBISS.SI-ID:
208778243
Datum objave v RUL:
25.09.2024
Število ogledov:
131
Število prenosov:
12
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Biomedicines
Skrajšan naslov:
Biomedicines
Založnik:
MDPI
ISSN:
2227-9059
COBISS.SI-ID:
523006745
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
magnetic resonance imaging
,
brain age prediction
,
deep model regression
,
brain age gap analysis
,
comparative study
,
quantitative evaluation
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0232
Naslov:
Analiza biomedicinskih slik in signalov
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J2-3059
Naslov:
Sprotno prilagajanje načrta protonske in radioterapije
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj