izpis_h1_title_alt

Prediction interval soft sensor for dissolved oxygen content estimation in an electric arc furnace
ID Blažič, Aljaž (Avtor), ID Škrjanc, Igor (Avtor), ID Logar, Vito (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,66 MB)
MD5: 02BFE1D44B447CF57BB3D0E626361B20
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1568494624010202 Povezava se odpre v novem oknu

Izvleček
In this study, a novel soft sensor modeling approach using Takagi–Sugeno (TS) fuzzy models and Prediction Intervals (PIs) is presented to quantify uncertainties in Electric Arc Furnace (EAF) steel production processes, namely to estimate the dissolved oxygen content in the steel bath. In real EAF operation, dissolved oxygen content is measured only a few times in the refining stage; therefore, the approach addresses the challenge of predicting unobserved output under conditions of irregular and scarce output measurements, using two distinct methods: Instant TS (I-TS) and Input Integration TS (II-TS). In the I-TS method, the model is computed for each individual indirect measurement, while the II-TS approach integrates these indirect measurements. The inclusion of PIs in TS models allows the derivation of the narrowest band containing a prescribed percentage of data, despite the presence of heteroscedastic noise. These PIs provide valuable insight into potential variability and allow decision-makers to evaluate worst-case scenarios. When evaluated against real EAF data, these methods were shown to effectively overcome the obstacles posed by scarce output measurements. Despite its simplicity, the I-TS model performed better in terms of interpretability and robustness to the operational reality of the EAF process. The II-TS model, on the other hand, showed excellent performance on all metrics but exhibited theoretical inconsistencies when deviating from typical operations. In addition, the proposed method successfully estimates carbon content in the steel bath using the established dissolved oxygen/carbon equilibrium, eliminating the need for direct carbon measurements. This shows the potential of the proposed methods to increase productivity and efficiency in the EAF steel industry.

Jezik:Angleški jezik
Ključne besede:Takagi–Sugeno fuzzy model, scarce output data, prediction interval, dissolved oxygen, electric arc furnace
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:12 str.
Številčenje:Vol. 167, pt. A, art. 112246
PID:20.500.12556/RUL-162052 Povezava se odpre v novem oknu
UDK:681.5:621.365.2
ISSN pri članku:1568-4946
DOI:10.1016/j.asoc.2024.112246 Povezava se odpre v novem oknu
COBISS.SI-ID:207963395 Povezava se odpre v novem oknu
Datum objave v RUL:18.09.2024
Število ogledov:144
Število prenosov:1158
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied soft computing
Založnik:Elsevier
ISSN:1568-4946
COBISS.SI-ID:16080679 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:mehki model Takagi–Sugeno, redke izhodne meritve, predikcijski intervali, raztopljen kisik, elektroobločne peči

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:869815
Naslov:Optimization and performance improving in metal industry by digital technologies
Akronim:INEVITABLE

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0219
Naslov:Modeliranje, simulacija in vodenje procesov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj