Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Obrnljive funkcije so sfere v svetu : delo diplomskega seminarja
ID
Najdovski, Timon
(
Author
),
ID
Bauer, Andrej
(
Mentor
)
More about this mentor...
,
ID
Rijke, Egbert Maarten
(
Comentor
)
PDF - Presentation file,
Download
(409,69 KB)
MD5: 9C69E9590B2D583C159B319025CC62EC
Image galllery
Abstract
Predstavimo definicijo sodb in kontekstov ter predstavimo njihovo uporabo za definicijo konstrukcij tipov v Martin-Löfovi teoriji odvisnih tipov. Na funkcijah vpeljemo pojma obrnljivosti in ekvivalence ter pokažemo, da sta logično ekvivalentna. Na tipih vpeljemo pojma kontraktibilnosti in propozicij ter pokažemo, da je pojem ekvivalence propozicija. Vpeljemo tip krožnice in aksiom univalence ter ju uporabimo kot protiprimer, da pokažemo, da pojem obrnljivosti ni vedno propozicija. Posledično pojma obrnljivosti in ekvivalence nista ekvivalentna, saj pokažemo, da ekvivalence ohranjajo propozicionalnost. Na tipih vpeljemo še pojem množic in skiciramo razlog, zakaj sta pojma obrnljivosti in ekvivalence na funkcijah med množicami ekvivalentna. Predstavimo še nekaj standardnih trditev homotopske teorije tipov in predstavimo karakterizacijo obrnljivosti, ki jo poveže z ekvivalenco. Karakterizacijo uporabimo, da pokažemo povezavo med obrnljivostjo in tipom sfere.
Language:
Slovenian
Keywords:
Homotopska teorija tipov
,
obrnljivost
,
ekvivalenca
,
sfera
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-162014
UDC:
510.6
COBISS.SI-ID:
208358915
Publication date in RUL:
18.09.2024
Views:
170
Downloads:
18
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Invertible maps are spheres in the universe
Abstract:
We present the definition of judgments and contexts and use them to present the definitions of type formers in Martin-Löf dependent type theory. We introduce the notions of invertibility and equivalence of functions and show that they are logically equivalent. We introduce the notions contractibility and propositionality of types and show that the notion of equivalence always forms a proposition. We introduce the circle type and the univalence axiom and use them as a counterexample to show that the notion of invertibility need not always be a proposition. Consequently, the notions of invertibility and equivalence cannot be equivalent, since we show that equivalences preserve propositionality. We present a few standard results of homotopy type theory and present a characterisation of invertibility that connects it with equivalence. We use this characterisation to show a connection between invertibility and the sphere type.
Keywords:
homotopy type theory
,
invertibility
,
equivalence
,
sphere
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back