izpis_h1_title_alt

Obrnljive funkcije so sfere v svetu : delo diplomskega seminarja
ID Najdovski, Timon (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Rijke, Egbert Maarten (Comentor)

.pdfPDF - Presentation file, Download (409,69 KB)
MD5: 9C69E9590B2D583C159B319025CC62EC

Abstract
Predstavimo definicijo sodb in kontekstov ter predstavimo njihovo uporabo za definicijo konstrukcij tipov v Martin-Löfovi teoriji odvisnih tipov. Na funkcijah vpeljemo pojma obrnljivosti in ekvivalence ter pokažemo, da sta logično ekvivalentna. Na tipih vpeljemo pojma kontraktibilnosti in propozicij ter pokažemo, da je pojem ekvivalence propozicija. Vpeljemo tip krožnice in aksiom univalence ter ju uporabimo kot protiprimer, da pokažemo, da pojem obrnljivosti ni vedno propozicija. Posledično pojma obrnljivosti in ekvivalence nista ekvivalentna, saj pokažemo, da ekvivalence ohranjajo propozicionalnost. Na tipih vpeljemo še pojem množic in skiciramo razlog, zakaj sta pojma obrnljivosti in ekvivalence na funkcijah med množicami ekvivalentna. Predstavimo še nekaj standardnih trditev homotopske teorije tipov in predstavimo karakterizacijo obrnljivosti, ki jo poveže z ekvivalenco. Karakterizacijo uporabimo, da pokažemo povezavo med obrnljivostjo in tipom sfere.

Language:Slovenian
Keywords:Homotopska teorija tipov, obrnljivost, ekvivalenca, sfera
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-162014 This link opens in a new window
UDC:510.6
COBISS.SI-ID:208358915 This link opens in a new window
Publication date in RUL:18.09.2024
Views:170
Downloads:18
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Invertible maps are spheres in the universe
Abstract:
We present the definition of judgments and contexts and use them to present the definitions of type formers in Martin-Löf dependent type theory. We introduce the notions of invertibility and equivalence of functions and show that they are logically equivalent. We introduce the notions contractibility and propositionality of types and show that the notion of equivalence always forms a proposition. We introduce the circle type and the univalence axiom and use them as a counterexample to show that the notion of invertibility need not always be a proposition. Consequently, the notions of invertibility and equivalence cannot be equivalent, since we show that equivalences preserve propositionality. We present a few standard results of homotopy type theory and present a characterisation of invertibility that connects it with equivalence. We use this characterisation to show a connection between invertibility and the sphere type.

Keywords:homotopy type theory, invertibility, equivalence, sphere

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back