Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Obrnljive funkcije so sfere v svetu : delo diplomskega seminarja
ID
Najdovski, Timon
(
Avtor
),
ID
Bauer, Andrej
(
Mentor
)
Več o mentorju...
,
ID
Rijke, Egbert Maarten
(
Komentor
)
PDF - Predstavitvena datoteka,
prenos
(409,69 KB)
MD5: 9C69E9590B2D583C159B319025CC62EC
Galerija slik
Izvleček
Predstavimo definicijo sodb in kontekstov ter predstavimo njihovo uporabo za definicijo konstrukcij tipov v Martin-Löfovi teoriji odvisnih tipov. Na funkcijah vpeljemo pojma obrnljivosti in ekvivalence ter pokažemo, da sta logično ekvivalentna. Na tipih vpeljemo pojma kontraktibilnosti in propozicij ter pokažemo, da je pojem ekvivalence propozicija. Vpeljemo tip krožnice in aksiom univalence ter ju uporabimo kot protiprimer, da pokažemo, da pojem obrnljivosti ni vedno propozicija. Posledično pojma obrnljivosti in ekvivalence nista ekvivalentna, saj pokažemo, da ekvivalence ohranjajo propozicionalnost. Na tipih vpeljemo še pojem množic in skiciramo razlog, zakaj sta pojma obrnljivosti in ekvivalence na funkcijah med množicami ekvivalentna. Predstavimo še nekaj standardnih trditev homotopske teorije tipov in predstavimo karakterizacijo obrnljivosti, ki jo poveže z ekvivalenco. Karakterizacijo uporabimo, da pokažemo povezavo med obrnljivostjo in tipom sfere.
Jezik:
Slovenski jezik
Ključne besede:
Homotopska teorija tipov
,
obrnljivost
,
ekvivalenca
,
sfera
Vrsta gradiva:
Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:
2.11 - Diplomsko delo
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2024
PID:
20.500.12556/RUL-162014
UDK:
510.6
COBISS.SI-ID:
208358915
Datum objave v RUL:
18.09.2024
Število ogledov:
173
Število prenosov:
18
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Invertible maps are spheres in the universe
Izvleček:
We present the definition of judgments and contexts and use them to present the definitions of type formers in Martin-Löf dependent type theory. We introduce the notions of invertibility and equivalence of functions and show that they are logically equivalent. We introduce the notions contractibility and propositionality of types and show that the notion of equivalence always forms a proposition. We introduce the circle type and the univalence axiom and use them as a counterexample to show that the notion of invertibility need not always be a proposition. Consequently, the notions of invertibility and equivalence cannot be equivalent, since we show that equivalences preserve propositionality. We present a few standard results of homotopy type theory and present a characterisation of invertibility that connects it with equivalence. We use this characterisation to show a connection between invertibility and the sphere type.
Ključne besede:
homotopy type theory
,
invertibility
,
equivalence
,
sphere
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj