izpis_h1_title_alt

Bijektivno dokazovanje identitet o razčlenitvah
ID Stepančič, Aleks (Author), ID Konvalinka, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (503,60 KB)
MD5: 63701B90B8F09E5F827AAB44D9CCD610

Abstract
V nalogi bomo predstavili bijektivne rezultate, povezane z razčlenitvami. Najprej je predstavljena terminologija in teoretične osnove rodovnih funkcij in razčlenitev, ki so osnova za delo. Za razumevanje povezave med bijek- tivnim dokazom in rodovnimi funkcijami, bomo spoznali dekompozicije Yo- ungovih diagramov. Predstavili bomo klasične rezultate Eulerjevega petko- tniškega izreka, kot je rekurzivna zveza za število razčlenitev ter Franklinovo involucijo. V preostanku dela obravnavamo orodja, potrebna za pridobitev dveh direktnih bijekcij rekurzivne zveze. Prvo je rang razčlenitve, ki služi kot osnova za Dysonovo preslikavo, s katero pridobimo eksplicitno direktno bijekcijo. Drugo orodje je princip involucije, ki nam nudi iterativen postopek za pridobitev druge direktne bijekcije.

Language:Slovenian
Keywords:bijekcije, razčlenitve, rodovne funkcije, Eulerjev petkotniški izrek, rang, načelo involucije
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161948 This link opens in a new window
COBISS.SI-ID:208498947 This link opens in a new window
Publication date in RUL:17.09.2024
Views:101
Downloads:19
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Bijectively proving integer partitions identities
Abstract:
In this thesis, we will present bijective results related to integer partitions. Initially, the terminology and theoretical foundations of generating functions and partitions, necessary for understanding the work, are introduced. To understand the connection between bijective proof and generating functions, we will explore the decompositions of Young diagrams. We will present classic results from Euler’s pentagonal theorem, such as the recursive relationship for the number of partitions and Franklin’s involution. In the remainder of the work, we address tools required to obtain two direct bijections of the recursive relationship. The first is the rank of partitions, which serves as a basis for Dyson’s mapping, with which we obtain an explicit direct bijection. The second tool is the principle of involution, which provides us with an iterative process to acquire another direct bijection.

Keywords:bijections, partitions, generating functions, Euler pentagonal theorem, rank, involution principle

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back