izpis_h1_title_alt

Henstock-Kurzweilov integral : delo diplomskega seminarja
ID Jerič, Miha (Author), ID Drinovec Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (373,36 KB)
MD5: 1BA4A78361342B89E699A72632C36ACB

Abstract
V diplomskem delu obravnavamo Henstock-Kurzweilov integral. Njegova definicija je podobna Riemannovi, le da finost delitev intervalov določa funkcija $\delta$ in ne več konstanta. Ta razlika omogoči integriranje mnogo splošnejših funkcij. Leibnizova formula omogoči integracijo funkcij, ki na zaprtem intervalu niso nujno povsod definirane. Sledi uvedba izlimitiranih integralov, ki sploh ne razširijo množice integrabilnih funkcij. Kot glavni izsledek navedemo izrek o monotoni konvergenci, ki poda zelo obvladljivo karakterizacijo funkcijskih zaporedij, za katera lahko zamenjamo vrstni red limite in integracije.

Language:Slovenian
Keywords:Riemannov integral, Henstock-Kurzweilov integral, Leibnizova formula, izlimitirani integral, izrek o monotoni konvergenci
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161819 This link opens in a new window
UDC:517
COBISS.SI-ID:207995139 This link opens in a new window
Publication date in RUL:14.09.2024
Views:144
Downloads:35
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Henstock-Kurzweil integral
Abstract:
In this thesis we look at the Henstock-Kurzweil integral. Its definition is similar to Riemann’s, except that the fineness of the partition of intervals is determined by a function $\delta$ and no longer by a constant. This difference allows one to integrate much more general functions. Leibniz’s formula allows the integration of functions which are not necessarily defined everywhere on a closed interval. This is followed by the introduction of improper integrals, which do not extend the set of integrable functions at all. The main result is the monotone convergence theorem, which gives a very manageable characterisation of function sequences for which the order of limit and integration can be reversed.

Keywords:Riemann integral, Henstock-Kurzweil integral, Leibniz formula, improper integral, monotone convergence theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back