izpis_h1_title_alt

Prepletenostna entropija mnogodelčnih kvantnih sistemov na mreži
ID Medoš, Gregor (Author), ID Vidmar, Lev (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,82 MB)
MD5: 65DFBBA42B05859A59DE6A9B818066F4

Abstract
Kvantna prepletenost v mnogodelčnih kvantnih sistemih na mreži je indikator za kvantni kaos ali kvantno integrabilnost. Za mero kvantne prepletenosti uporabimo bipartitno prepletenostno entropijo, ki jo izračunamo po von Neumannovi formuli. Obravnavamo visoko vzbujena lastna stanja Bose-Hubbardovega modela v režimu kvantnega kaosa. Lastna stanja izračunamo s točno diagonaliacijo Hamiltoniana. Za analitično obravnavo povprečne prepletenostne entropije si pomagamo s teorijo naključnih matrik. Zaradi prisotnosti globalne simetrije U(1) Bose-Hubbardov model ohranja število delcev. Posledično potrebujemo kanonična naključna stanja in razcepiti Hilbertov prostor na sektorje s fiksnim številom delcev. Obravnaval sem bozone z omejitvijo za lokalna zasedbena števila in bozone brez omejitve. Uvedel sem nov pristop k določanju vodilnega člena kanoničnega povprečja prepletenostne entropije za bozone na mreži s pomočjo približka povprečnega polja velekanoničnega povprečja prepletenostne entropije. Povprečna prepletenostna entropija visoko vzbujenih lastnih stanj Bose-Hubbardovega modela s parametroma t = U = 1 se ujema s pridobljeno analitično rešitvijo iz teorije naključnih matrik.

Language:Slovenian
Keywords:prepletenostna entropija, mnogodelčni kvantni sistemi na mreži, približek povprečnega polja
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161815 This link opens in a new window
COBISS.SI-ID:207716099 This link opens in a new window
Publication date in RUL:14.09.2024
Views:167
Downloads:97
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Entanglement entropy of many-body quantum systems on a lattice
Abstract:
Quantum entanglement in many-body quantum systems on a lattice is an indicator for quantum chaos or quantum integrability. We use the bipartite entanglement entropy as a measure for quantum entanglement using the von Neumann formula. We examine highly excited eigenstates of the Bose-Hubbard model in the quantum chaotic regime. We calculate the eigenstates via exact diagonalization of the Hamiltonian. For deriving an analytical expression for the average entanglement entropy we use random matrix theory. Because of the presence of the global symmetry U(1), the Bose-Hubbard model conserves the total particle number. Hence, we need canonical random states and to decompose the Hilbert space into sectors with a fixed particle number. I examined bosons with a cut-off for the local occupation numbers and bosons without a cut-off. I introduced a new way of determining the leading term of the canonical average entanglement entropy for bosons on a lattice from the mean-field approximation of the grand canonical entanglement entropy. The average entanglement entropy of highly excited eigenstates of the Bose-Hubbard model with parameters t = U = 1 is in agreement with the analytical solution from random matrix theory.

Keywords:entanglement entropy, many-body quantum systems on a lattice, mean-field approximation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back