izpis_h1_title_alt

Delovanje simetrične grupe na prostoru parkirnih funkcij
ID Mislej, Nina (Author), ID Konvalinka, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (441,07 KB)
MD5: F62FAD7FEAC1FD1B14FE76E3D38A630E

Abstract
Delo opisuje upodobitve končnih grup na končnih vektorskih prostorih. Sestavljeno je iz treh samostojnih poglavij. Prvo poglavje predstavlja opis algebrskih struktur, ki so osnova teorije upodobitev. Drugo poglavje ponuja obširen pregled teorije upodobitev z več različnih perspektiv ter dokaže nekatere ključne lastnosti. Zadnji del je namenjen uporabi teorije, kjer upodobitve obravnavamo na konkretnem primeru prostora parkirnih funkcij. Delo pokriva zelo široko tematiko, na koncu pa bralcu omogoči razumevanje, kako opisati strukturo vseh nerazcepnih upodobitev simetrične grupe, tako v jeziku karakterjev kot na primeru simetričnih funkcij.

Language:Slovenian
Keywords:parkirne funkcije, simetrična grupa, delovanje simetrične grupe, upodobitve grup
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161752 This link opens in a new window
COBISS.SI-ID:213542403 This link opens in a new window
Publication date in RUL:13.09.2024
Views:130
Downloads:18
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Symmetric Group Representations on the Space of Parking Functions
Abstract:
This thesis explores the representations of finite groups on finite-dimensional vector spaces. It is structured into three stand-alone chapters. The first chapter provides an overview of the algebraic structures that stand behind the theory of representations. The second chapter offers an extensive review of the theory of representations from various perspectives and proves several key properties. The final chapter is dedicated to the application of the theory, where representations are examined through the specific example of the space of parking functions. The thesis covers a broad range of topics, ultimately enabling the reader to understand how to describe the structure of all irreducible representations of the symmetric group, both in terms of character theory and through the lens of symmetric functions.

Keywords:parking functions, symmetric group, symmetric group actions, group representation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back