izpis_h1_title_alt

Cevovod za razpoznavo uhljev z uporabo siamskih modelov na odprtih množicah podatkov
ID Justin, Aljaž (Author), ID Emeršič, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Peer, Peter (Comentor)

.pdfPDF - Presentation file, Download (3,26 MB)
MD5: DEB69FDA7F3113566969728FEB111B77

Abstract
Diplomska naloga obravnava problem razpoznave oseb na podlagi uhljev z namenom izboljšanja točnosti in zanesljivosti pri procesu detekcije in razpoznave oseb na podlagi uhljev ter razvoja cevovoda, ki omogoča delovanje v realnem času, s pomočjo globokih nevronskih mrež. Rešitev temelji na dveh delih: detekciji uhljev z modelom YOLOv8 in razpoznavi s siamskim modelom, združenih v enoten sistem, ki omogoča delovanje z eno samo sliko uhlja na odprtem naboru podatkov. Ovrednotili smo dve različni variaciji siamskega modela za razpoznavo na odprtih množicah. Uporaba modela, temelječega na ResNet arhitekturi, se je izkazala za boljšo od modela, temelječega na arhitekturi EfficientNet. S tem delom smo pokazali, da so siamske nevronske mreže primerne za razpoznavo na podlagi uhljev in da je na tem področju še veliko prostora za izboljšave.

Language:Slovenian
Keywords:razpoznava uhljev, detekcija uhljev, siamske nevronske mreže, globoko učenje, biometrija, računalniški vid
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161574 This link opens in a new window
COBISS.SI-ID:212952579 This link opens in a new window
Publication date in RUL:12.09.2024
Views:134
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Ear recognition pipeline using Siamese models on open data sets
Abstract:
The thesis addresses the problem of ear-based person recognition with the aim of improving accuracy and reliability in the process of ear detection and recognition, as well as developing a pipeline that enables real-time operation using deep neural networks. The solution consists of two parts: ear detection using the YOLOv8 model and recognition employing a Siamese model, combined into a unified system that operates with a single ear image on an open dataset. We evaluated two different variations of the Siamese model for recognition on open sets. The model based on the ResNet architecture proved to be superior to the model based on the EfficientNet architecture. With this work, we have demonstrated that Siamese neural networks are suitable for ear-based recognition and that there is significant room for improvement in this area.

Keywords:ear recognition, ear detection, siamese neural networks, deep learning, biometrics, computer vision

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back