izpis_h1_title_alt

Odkrivanje umetno ustvarjenih slik
ID Ožbot, Tilen (Author), ID Emeršič, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Batagelj, Borut (Comentor)

.pdfPDF - Presentation file, Download (4,42 MB)
MD5: 448335092D292E6D8169D4AA5685AB16

Abstract
V zadnjih letih so difuzijski modeli postali močno orodje v generativni umetni inteligenci, ki lahko ustvarja zelo realistične slike, pogosto podobne predmetom in prizorom iz resničnega sveta, zaradi česar jih je skoraj nemogoče ločiti od pristnih. Te sintetične slike, znane tudi kot globoki ponaredki (angl. Deepfakes), predstavljajo pomemben izziv pri razlikovanju med avtentično in umetno ustvarjeno vsebino. Diplomska naloga se ukvarja s to problematiko skozi sodelovanje na tekmovanju, namenjenemu odkrivanju slik, generiranih z najsodobnejšimi difuzijskimi modeli. V okviru naloge smo primerjali različne rešitve in poskušali izboljšati obstoječe pristope za odkrivanje teh globokih ponaredkov. S primerjanjem različnih metodologij smo raziskovali, kako učinkovito je mogoče ločiti resnične slike od tistih, ki jih ustvarijo difuzijski modeli. To delo ne prispeva le k obstoječim raziskavam na tem področju, temveč tudi osvetljuje izzive in možne strategije za izboljšanje odkrivanja globokih ponaredkov.

Language:Slovenian
Keywords:difuzijski modeli, generativne nasprotniške mreže, odkriva- nje sintetičnih slik, generativna umetna inteligenca, globoki ponaredki
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161573 This link opens in a new window
COBISS.SI-ID:212801795 This link opens in a new window
Publication date in RUL:12.09.2024
Views:137
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detection of Artificially Generated Images
Abstract:
In recent years, diffusion models have become a powerful tool in generative artificial intelligence, capable of creating highly realistic images, often resem- bling real-world objects and scenes, making them nearly indistinguishable from genuine ones. These synthetic images, also known as deepfakes, present a significant challenge in differentiating between authentic and artificially generated content. This diploma thesis addresses this issue through participa- tion in a competition aimed at detecting images generated by state-of-the-art diffusion models. In this work, we compared various solutions and attempted to improve existing approaches to detecting these deepfake images. By eval- uating different methodologies, we explored how effectively real images can be distinguished from those generated by diffusion models. This work not only contributes to the ongoing research in this field but also highlights the challenges and potential strategies for enhancing deepfake detection.

Keywords:Diffusion Models, Generative Adversarial Networks, Synthetic Image Detection, Generative AI, Deepfakes.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back