izpis_h1_title_alt

Singularna spektralna analiza : delo diplomskega seminarja
ID Logar, Liza (Author), ID Plestenjak, Bor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,42 MB)
MD5: 0417BC0C4D7FB758C86A959B0196B201

Abstract
V delu diplomskega seminarja raziskujemo singularno spektralno analizo, ki je numerična metoda za analizo in napovedovanje časovnih vrst. Metoda je še posebej uporabna za napovedovanje ter razcep časovnih vrst na smiselne komponente, kot so trend, periodične komponente in šum. Predstavimo osnovni algoritem, analiziramo izbiro parametrov metode ter predstavimo teoretične in praktične smernice za njihovo določitev. Ugotovimo, da imamo pri izbiri parametrov kar nekaj svobode, zato ta korak metode težko formaliziramo. Opišemo tudi nekaj metod za napovedovanje časovnih vrst, ki temeljijo na singularni spektralni analizi. V delo vključimo več praktičnih primerov, ki so implementirani v jeziku MATLAB.

Language:Slovenian
Keywords:singularna spektralna analiza, singularni razcep, časovna vrsta
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161529 This link opens in a new window
UDC:519.6
COBISS.SI-ID:207808515 This link opens in a new window
Publication date in RUL:12.09.2024
Views:883
Downloads:48
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Singular Spectrum Analysis
Abstract:
In this diploma seminar thesis, we explore Singular Spectrum Analysis, a numerical method for analyzing and forecasting time series. The method is particularly useful for forecasting and decomposing time series into meaningful components, such as trend, periodic components, and noise. We present the basic algorithm, analyze the selection of method parameters, and provide theoretical and practical guidelines for their determination. We find that there is considerable flexibility in parameter selection, making it difficult to formalize this step of the method. We also describe some time series forecasting methods based on Singular Spectrum Analysis. The work includes several practical examples implemented in MATLAB.

Keywords:singular spectrum analysis, singular value decomposition, time series

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back