izpis_h1_title_alt

Covering the edges of a graph with triangles
ID Bujtás, Csilla (Author), ID Davoodi, Akbar (Author), ID Ding, Laihao (Author), ID Győri, Ervin (Author), ID Tuza, Zsolt (Author), ID Yang, Donglei (Author)

.pdfPDF - Presentation file, Download (270,06 KB)
MD5: F0D05868F841D1EADBEC0CED74F5359E
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0012365X24003571 This link opens in a new window

Abstract
In a graph $G$, let $\rho_\triangle(G)$ denote the minimum size of a set of edges and triangles that cover all edges of $G$, and let $\alpha_1(G)$ be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between $\rho_\triangle(G)$ and $\alpha_1(G)$ and establish a sharp upper bound on $\rho_\triangle(G)$. We also prove Nordhaus-Gaddum-type inequalities for the considered invariants.

Language:English
Keywords:edge-disjoint triangles, edge clique covering, Nordhaus-Gaddum inequality
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2025
Number of pages:8 str.
Numbering:Vol. 348, iss. 1, art. 114226
PID:20.500.12556/RUL-161300-57bb6709-7cc1-4a07-023f-830cf48f3157 This link opens in a new window
UDC:519.17
ISSN on article:0012-365X
DOI:10.1016/j.disc.2024.114226 This link opens in a new window
COBISS.SI-ID:206292739 This link opens in a new window
Publication date in RUL:09.09.2024
Views:137
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Discrete mathematics
Shortened title:Discrete math.
Publisher:Elsevier
ISSN:0012-365X
COBISS.SI-ID:1118479 This link opens in a new window

Licences

License:CC BY-NC 4.0, Creative Commons Attribution-NonCommercial 4.0 International
Link:http://creativecommons.org/licenses/by-nc/4.0/
Description:A creative commons license that bans commercial use, but the users don’t have to license their derivative works on the same terms.

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0355
Name:Prirejanja, transverzale in hipergrafi

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:Other - Other funder or multiple funders
Funding programme:National Natural Science Foundation of China
Project number:11901226

Funder:Other - Other funder or multiple funders
Funding programme:NKFIH
Project number:132696

Funder:Other - Other funder or multiple funders
Funding programme:NKFIH
Project number:SNN 129364

Funder:Other - Other funder or multiple funders
Funding programme:NKFIH
Project number:FK 132060

Funder:Other - Other funder or multiple funders
Funding programme:China Postdoctoral Science Foundation
Project number:2021T140413

Funder:Other - Other funder or multiple funders
Funding programme:Natural Science Foundation of China
Project number:12101365

Funder:Other - Other funder or multiple funders
Funding programme:Natural Science Foundation of Shandong Province
Project number:ZR2021QA029

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back