izpis_h1_title_alt

The truncated moment problem on curves $y = q(x)$ and $yx^\ell = 1$
ID Zalar, Aljaž (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,07 MB)
MD5: ED6BD814428AD2309703117A74955699
URLURL - Izvorni URL, za dostop obiščite https://www.tandfonline.com/doi/full/10.1080/03081087.2023.2212316 Povezava se odpre v novem oknu

Izvleček
In this paper, we study the bivariate truncated moment problem (TMP) on curves of the form $y = q(x), q(x) \in \mathbb{R} [x], \deg q ≥ 3$ and $yx^\ell = 1, \ell \in \mathbb{N}$ \ $\{1\}$. For even degree sequences, the solution based on the size of moment matrix extensions was first given by Fialkow [Fialkow L. Solution of the truncated moment problem with variety $y = x^3$. Trans Amer Math Soc. 2011;363:3133–3165.] using the truncated Riesz–Haviland theorem [Curto R, Fialkow L. An analogue of the Riesz–Haviland theorem for the truncated moment problem. J Funct Anal. 2008;255:2709–2731.] and a sum-of-squares representations for polynomials, strictly positive on such curves [Fialkow L. Solution of the truncated moment problem with variety $y = x^3$. Trans Amer Math Soc. 2011;363:3133–3165.; Stochel J. Solving the truncated moment problem solves the moment problem. Glasgow J Math. 2001;43:335–341.]. Namely, the upper bound on this size is quadratic in the degrees of the sequence and the polynomial determining a curve. We use a reduction to the univariate setting technique, introduced in [Zalar A. The truncated Hamburger moment problem with gaps in the index set. Integral Equ Oper Theory. 2021;93:36.doi: 10.1007/s00020-021-02628-6.; Zalar A. The truncated moment problem on the union of parallel lines. Linear Algebra Appl. 2022;649:186–239. doi.org/10.1016/j.laa.2022.05.008.; Zalar A. The strong truncated Hamburger moment problem with and without gaps. J Math Anal Appl. 2022;516:126563. doi: 10.1016/j.jmaa.2022. 126563.], and improve Fialkow’s bound to $\deg q − 1$ (resp. $\ell + 1$) for curves $y = q(x)$ (resp. $yx^\ell = 1$). This in turn gives analogous improvements of the degrees in the sum-of-squares representations referred to above. Moreover, we get the upper bounds on the number of atoms in the minimal representing measure, which are $k \deg q$ (resp. $k(\ell+ 1)$) for curves $y = q(x)$ (resp. $yx^\ell = 1$) for even degree sequences, while for odd ones they are $k \deg q − \bigl \lceil \frac{\deg q}{2} \bigr \rceil$ (resp. $k(\ell + 1) − \bigl \lfloor \frac{\ell}{2} \bigr \rfloor + 1$) for curves $y = q(x)$ (resp. $yx^\ell = 1$). In the even case, these are counterparts to the result by Riener and Schweighofer [Riener C, Schweighofer M. Optimization approaches to quadrature:a new characterization of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions. J Complex. 2018;45:22–54., Corollary 7.8], which gives the same bound for odd degree sequences on all plane curves. In the odd case, their bound is slightly improved on the curves we study. Further on, we give another solution to the TMP on the curves studied based on the feasibility of a linear matrix inequality, corresponding to the univariate sequence obtained, and finally we solve concretely odd degree cases to the TMP on curves $y = x^\ell, \ell = 2, 3,$ and add a new solvability condition to the even degree case on the curve $y = x^2$.

Jezik:Angleški jezik
Ključne besede:truncated moment problems, K-moment problems, K-representing measure, minimal measure, moment matrix extensions, Positivstellensatz, linear matrix inequality
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 1922-1966
Številčenje:Vol. 72, no. 12
PID:20.500.12556/RUL-159754 Povezava se odpre v novem oknu
UDK:512
ISSN pri članku:0308-1087
DOI:10.1080/03081087.2023.2212316 Povezava se odpre v novem oknu
COBISS.SI-ID:152329475 Povezava se odpre v novem oknu
Datum objave v RUL:23.07.2024
Število ogledov:311
Število prenosov:79
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Linear and multilinear algebra
Skrajšan naslov:Linear multilinear algebra
Založnik:Taylor & Francis
ISSN:0308-1087
COBISS.SI-ID:25872128 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:prirezani momentni problemi, K-momentni problemi, K-reprezentirajoča mera, minimalna mera, razširitve momentne matrike, linearna matrična neenakost

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-2453
Naslov:Matrično konveksne množice in realna algebraična geometrija

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-3004
Naslov:Hkratna podobnost matrik

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0288
Naslov:Algebra in njena uporaba

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj