izpis_h1_title_alt

Homotopska razdalja : delo diplomskega seminarja
ID Zaletelj, Alja (Avtor), ID Pavešić, Petar (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,04 MB)
MD5: F640896BA3F2D3EC1324937F249B141C

Izvleček
V homotopski teoriji enačimo preslikave, ki so med seboj homotopne. Za poljubni preslikavi iz $X$ v $Y$ iščemo podprostore $X$, na katerih sta homotopni. Najmanjše število takih podprostorov, ki domeno $X$ pokrijejo, razglasimo za njuno homotopsko razdaljo. Z uporabo lastnosti homotopije in razširjanjem pokritij normalnih prostorov dokažemo, da je homotopska razdalja na njih metrika. Homotopsko razdaljo povežemo s Lusterik-Schnirelmannovo kategorijo in topološko kompleksnostjo. Povezave med njimi nam poenostavijo dokaze njihovih lastnosti in jih predstavijo v novi luči.

Jezik:Slovenski jezik
Ključne besede:homotopija, homotopska razdalja, homotopska ekvivalenca, trikotniška neenakost, Lusternik-Schnirelmannova kategorija, kategorična množica, topološka kompleksnost, vlaknenje, prerezna kategorija
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2024
PID:20.500.12556/RUL-159199 Povezava se odpre v novem oknu
UDK:515.1
COBISS.SI-ID:200520195 Povezava se odpre v novem oknu
Datum objave v RUL:03.07.2024
Število ogledov:266
Število prenosov:47
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Homotopic distance
Izvleček:
In homotopy theory we identify maps that are homotopic. For two mappings from $X$ to $Y$ we look for subspaces of $X$ on which they are homotopic. The minimum number of such subspaces covering the domain $X$ is declared to be their homotopic distance. Using properties of homotopy and extending the covers of normal spaces, we prove that the homotopic distance on them is a metric. We connect homotopic distance with Lusternik-Schnirelmann category and topological complexity. The links between them simplify the proofs of their properties and present them in a new light.

Ključne besede:homotopy, homotopic distance, homotopy equivalence, triangular inequality, Lusternik-Schnirelmann category, categorical set, topological complexity, fibration, sectional category

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj