izpis_h1_title_alt

Problem optimalnega ustavljanja Brownovega mostu : magistrsko delo
ID Avsenik, Ana Marija (Author), ID Bernik, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,37 MB)
MD5: D4691EC19E8B4332098CCC9327907D2C
.rR - Appendix, Download (0,93 KB)
MD5: 20BF7BE2FB616EFF2710ED07B622407E
.rR - Appendix, Download (1,25 KB)
MD5: 2B9FF9813BBAE290C5E6AB288DAE863C
This document has even more files. Complete list of files is available below.

Abstract
V delu obravnavamo optimalen čas ustavljanja Brownovega mostu in funkcionala Brownovega mostu. Spomnimo se nekaterih osnovnih pojmov, kot so filtracije, martingali in Brownovo gibanje. S pomočjo slučajnih procesov poskušamo poiskati lastnosti Brownovega mostu ter si s tem pomagati pri izračunu optimalnega časa ustavljanja, pri čemer uporabimo tudi znanje reševanja diferencialnih enačb. Pogledamo si še optimalen čas ustavljanja lihe potence, preslikanega in integrala Brownovega mostu. Omenjene krivulje nato simuliramo v programu R.

Language:Slovenian
Keywords:Brownov most, Brownovo gibanje, Itova formula, martingal, lokalni martingal, navadna diferencialna enačba, optimalen čas ustavljanja
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-159095 This link opens in a new window
UDC:519.2
COBISS.SI-ID:200147971 This link opens in a new window
Publication date in RUL:29.06.2024
Views:244
Downloads:43
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The problem of optimal stopping of a Brownian bridge
Abstract:
This work studies optimal stopping time of a Brownian bridge and functional of a Brownian bridge. We recall some basic terms as filtrations, martingales and Brownian motion. We study their properties using stochastic processes. We solve optimal stopping problem, and several related problems, using knowledge of solving differential equations. We also study some related problems where the gain functions are certain functionals of a Brownian bridge. Odd powers, reflected and integral of a Brownian bridge is considered. For simulation we use program R.

Keywords:Brownian bridge, Brownian motion, Ito's lemma, martingal, local martingal, ordinary differential equation, optimal stopping time

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Files

Loading...

Back