Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Problem optimalnega ustavljanja Brownovega mostu : magistrsko delo
ID
Avsenik, Ana Marija
(
Author
),
ID
Bernik, Janez
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,37 MB)
MD5: D4691EC19E8B4332098CCC9327907D2C
R - Appendix,
Download
(0,93 KB)
MD5: 20BF7BE2FB616EFF2710ED07B622407E
R - Appendix,
Download
(1,25 KB)
MD5: 2B9FF9813BBAE290C5E6AB288DAE863C
This document has even more files. Complete list of files is available
below
.
Image galllery
Abstract
V delu obravnavamo optimalen čas ustavljanja Brownovega mostu in funkcionala Brownovega mostu. Spomnimo se nekaterih osnovnih pojmov, kot so filtracije, martingali in Brownovo gibanje. S pomočjo slučajnih procesov poskušamo poiskati lastnosti Brownovega mostu ter si s tem pomagati pri izračunu optimalnega časa ustavljanja, pri čemer uporabimo tudi znanje reševanja diferencialnih enačb. Pogledamo si še optimalen čas ustavljanja lihe potence, preslikanega in integrala Brownovega mostu. Omenjene krivulje nato simuliramo v programu R.
Language:
Slovenian
Keywords:
Brownov most
,
Brownovo gibanje
,
Itova formula
,
martingal
,
lokalni martingal
,
navadna diferencialna enačba
,
optimalen čas ustavljanja
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-159095
UDC:
519.2
COBISS.SI-ID:
200147971
Publication date in RUL:
29.06.2024
Views:
244
Downloads:
43
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
The problem of optimal stopping of a Brownian bridge
Abstract:
This work studies optimal stopping time of a Brownian bridge and functional of a Brownian bridge. We recall some basic terms as filtrations, martingales and Brownian motion. We study their properties using stochastic processes. We solve optimal stopping problem, and several related problems, using knowledge of solving differential equations. We also study some related problems where the gain functions are certain functionals of a Brownian bridge. Odd powers, reflected and integral of a Brownian bridge is considered. For simulation we use program R.
Keywords:
Brownian bridge
,
Brownian motion
,
Ito's lemma
,
martingal
,
local martingal
,
ordinary differential equation
,
optimal stopping time
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Files
Loading...
Back