izpis_h1_title_alt

Y-GAN : learning dual data representations for anomaly detection in images
ID Ivanovska, Marija (Avtor), ID Štruc, Vitomir (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,99 MB)
MD5: 83C971776348434F3D3BF2C4CF9C37DD
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0957417424002756 Povezava se odpre v novem oknu

Izvleček
We propose a novel reconstruction-based model for anomaly detection in image data, called ’Y-GAN’. The model consists of a Y-shaped auto-encoder and represents images in two separate latent spaces. The first captures meaningful image semantics, which are key for representing (normal) training data, whereas the second encodes low-level residual image characteristics. To ensure the dual representations encode mutually exclusive information, a disentanglement procedure is designed around a latent (proxy) classifier. Additionally, a novel representation-consistency mechanism is proposed to prevent information leakage between the latent spaces. The model is trained in a one-class learning setting using only normal training data. Due to the separation of semantically-relevant and residual information, Y-GAN is able to derive informative data representations that allow for efficacious anomaly detection across a diverse set of anomaly detection tasks. The model is evaluated in comprehensive experiments with several recent anomaly detection models using four popular image datasets, i.e., MNIST, FMNIST, CIFAR10, and PlantVillage. Experimental results show that Y-GAN outperforms all tested models by a considerable margin and yields state-of-the-art results. The source code for the model is made publicly available at https://github.com/MIvanovska/Y-GAN.

Jezik:Angleški jezik
Ključne besede:anomaly detection, one-class learning, deep learning, disentangled data representations
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:17 str.
Številčenje:Vol. 248, art. 123410
PID:20.500.12556/RUL-156066 Povezava se odpre v novem oknu
UDK:004.93
ISSN pri članku:1873-6793
DOI:10.1016/j.eswa.2024.123410 Povezava se odpre v novem oknu
COBISS.SI-ID:184821507 Povezava se odpre v novem oknu
Datum objave v RUL:07.05.2024
Število ogledov:304
Število prenosov:84
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Expert systems with applications
Založnik:Elsevier
ISSN:1873-6793
COBISS.SI-ID:23001861 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:detekcija anomalij, enorazredno učenje, globoko učenje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-50065
Naslov:Odkrivanje globokih ponaredkov z metodami zaznave anomalij (DeepFake DAD)

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj