izpis_h1_title_alt

Samodejno določanje neuspešnega sledenja objektov
ID BRODNIK, LUKA (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,85 MB)
MD5: AF31C1D53B8173CF2327137465FC307E

Abstract
Sledenje objektov je področje analize gibanja, pri kateri algoritem skozi čas sledi objektu v zaporedju slik. Pogosto se uporablja na področju varnostnih sistemov, avtonomnih vozil, robotike in mnogo drugih. Sledilni algoritmi pa lahko v določenih okoliščinah tudi odpovejo, t.j. preneha slediti pravemu objektu. V sklopu diplomske naloge smo predlagali dva različna pristopa za napovedovanja neuspešnega sledenja, ki bi lahko delovala vzporedno s poljubnim sledilnikom. Prvi tmelji na podlagi globokih opisnikov, drugi pa na optičnem toku. Za oba pristopa smo posebej obdelali podatke iz tekmovanja sledilnikov VOT2019, izluščili smo primere odpovedi ter uspešnega sledenja ter na generiranih podatkih naučili modele za napovedovanje neuspeha. Delovanje naučenih napovednih modelov smo preverili na celotnih sekvencah za več sledilnikov ter jih primerjali.

Language:Slovenian
Keywords:sledenje objektov, značilke slik, optični tok, računalniški vid, umetna inteligenca
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155938 This link opens in a new window
COBISS.SI-ID:190812163 This link opens in a new window
Publication date in RUL:24.04.2024
Views:485
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting visual object tracker failure
Abstract:
Object tracking deals with movement analysis in which the algorithm tracks an objects throughout an image sequence. It is commonly used in the field of security systems, autonomous vehicles, robotics and many more. Under some circumstances object tracking algorithms fail meaning they no longer track the correct object. In the diploma thesis we use two different approaches for predicting object tracker failure, which could run parallel with a given tracker. The first approach is based on image features and the second on optical flow analysis. For bot approaches we processed data from the VOT2019 competition. We separated the data into failed and successful tracking and trained the failure prediction models on it. We tested the final models on whole videos and the data from the trackers and compared them at the end.

Keywords:visual object tracking, image features, optic flow, computer vision, artificial intelligence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back