izpis_h1_title_alt

Odkrivanje kritičnih podskupin pri napovedovanju povpraševanja
ID Šemrl, Natan (Author), ID Možina, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (580,05 KB)
MD5: C414DA2F83B74FB165AC0D45121FBBA1

Abstract
V diplomskem delu se soočamo z odkrivanjem najslabših podskupin v napovednem modelu redne prodaje sadja in zelenjave. Osnovna želja je, da bi lahko model izboljšali tako, da vidimo, kje naredi napako, nato pa lahko z analizo ugotovimo, zakaj je napaka nastala. Problem smo rešili z uvedbo samodejnega postopka, ki išče kritične podskupine, tako da pridobi podatke, jih prečisti in pripravi, nato pa z uporabo algoritma za odkrivanje najde nekaj podskupin, ki so problematične. Poleg tega je bil velik del reševanja tudi analiza posameznih primerov za izboljšavo postopka. Po implementaciji se postopek redno izvaja in uporablja za poslovne potrebe podjetja.

Language:Slovenian
Keywords:napovedovanje povpraševanja, prodaja, časovne vrste, napovedni model, podatkovna analiza, odkrivanje podskupin
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155272 This link opens in a new window
COBISS.SI-ID:190817027 This link opens in a new window
Publication date in RUL:22.03.2024
Views:672
Downloads:50
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Discovery of critical subgroups in demand forecasting
Abstract:
The thesis deals with finding the worst subgroups in the forecasts of a machine learning model for fruits and vegetables. The primary goal is the improvement of the model, by seeing where it made a mistake, then analyzing that mistake and attempting to learn why it happened. We solved the problem by defining a process that searches for critical subgroups, first gathering and preparing the data, then running an algorithm to find a few problematic subgroups. Beside that, another part of problem solving was analyzing the cases themselves, to further improve the process. After the implementation, the process runs weekly and is used for the business needs of the company.

Keywords:demand forecasting, sales, time series, forecasting model, data analysis, subgroup discovery

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back