Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Minimal surfaces with symmetries
ID
Forstnerič, Franc
(
Author
)
PDF - Presentation file,
Download
(587,74 KB)
MD5: 4BD4CB142969C5A104CC0782E076C91A
URL - Source URL, Visit
https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.12590
Image galllery
Abstract
Let $G$ be a finite group acting on a connected open Riemann surface $X$ by holomorphic automorphisms and acting on a Euclidean space ${\mathbb R}^n$ $(n\ge 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a $G$-equivariant conformal minimal immersion $F:X\to{\mathbb R}^n$. We show in particular that such a map $F$ always exists if $G$ acts without fixed points on $X$. Furthermore, every finite group $G$ arises in this way for some open Riemann surface $X$ and $n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete infinite groups acting on $X$ properly discontinuously and acting on ${\mathbb R}^n$ by rigid transformations.
Language:
English
Keywords:
Riemann surfaces
,
minimal surfaces
,
G-equivariant conformal minimal immersion
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2024
Number of pages:
32 str.
Numbering:
Vol. 128, iss. 3, art. e12590
PID:
20.500.12556/RUL-154999
UDC:
517.5
ISSN on article:
0024-6115
DOI:
10.1112/plms.12590
COBISS.SI-ID:
188644867
Publication date in RUL:
13.03.2024
Views:
362
Downloads:
40
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Proceedings of the London Mathematical Society
Shortened title:
Proc. Lond. Math. Soc.
Publisher:
Wiley, London Mathematical Society
ISSN:
0024-6115
COBISS.SI-ID:
26179584
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Secondary language
Language:
Slovenian
Keywords:
Riemannove ploskve
,
minimalne ploskve
,
G-ekvivariantna konformna minimalna imerzija
Projects
Funder:
EC - European Commission
Funding programme:
HE
Project number:
101053085
Name:
Holomorphic Partial Differential Relations
Acronym:
HPDR
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0291
Name:
Analiza in geometrija
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
J1-3005
Name:
Kompleksna in geometrijska analiza
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0237
Name:
Holomorfne parcialne diferencialne relacije
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back