izpis_h1_title_alt

Minimal surfaces with symmetries
ID Forstnerič, Franc (Author)

.pdfPDF - Presentation file, Download (587,74 KB)
MD5: 4BD4CB142969C5A104CC0782E076C91A
URLURL - Source URL, Visit https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.12590 This link opens in a new window

Abstract
Let $G$ be a finite group acting on a connected open Riemann surface $X$ by holomorphic automorphisms and acting on a Euclidean space ${\mathbb R}^n$ $(n\ge 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a $G$-equivariant conformal minimal immersion $F:X\to{\mathbb R}^n$. We show in particular that such a map $F$ always exists if $G$ acts without fixed points on $X$. Furthermore, every finite group $G$ arises in this way for some open Riemann surface $X$ and $n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete infinite groups acting on $X$ properly discontinuously and acting on ${\mathbb R}^n$ by rigid transformations.

Language:English
Keywords:Riemann surfaces, minimal surfaces, G-equivariant conformal minimal immersion
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2024
Number of pages:32 str.
Numbering:Vol. 128, iss. 3, art. e12590
PID:20.500.12556/RUL-154999 This link opens in a new window
UDC:517.5
ISSN on article:0024-6115
DOI:10.1112/plms.12590 This link opens in a new window
COBISS.SI-ID:188644867 This link opens in a new window
Publication date in RUL:13.03.2024
Views:365
Downloads:40
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Proceedings of the London Mathematical Society
Shortened title:Proc. Lond. Math. Soc.
Publisher:Wiley, London Mathematical Society
ISSN:0024-6115
COBISS.SI-ID:26179584 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:Riemannove ploskve, minimalne ploskve, G-ekvivariantna konformna minimalna imerzija

Projects

Funder:EC - European Commission
Funding programme:HE
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back