Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
On a continuation of quaternionic and octonionic logarithm along curves and the winding number
ID
Gentili, Graziano
(
Avtor
),
ID
Prezelj, Jasna
(
Avtor
),
ID
Vlacci, Fabio
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(693,26 KB)
MD5: 48802AD49CB277BA4E19AB1FEF5CD381
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0022247X24001410
Galerija slik
Izvleček
This paper deals with the problem of finding a continuous extension of the hypercomplex (quaternionic or octonionic) logarithm along (quaternionic or octonionic) paths which avoid the origin. The main difficulty depends upon this fact: while a branch of the complex logarithm can be defined in a small open neighbourhood of a strictly negative real point, no continuous branch of the hypercomplex logarithm can be defined in any open set which contains a strictly negative real point. To overcome this difficulty, we use the logarithmic manifold: in general, the existence of a lift of a path to this manifold is not guaranteed and, indeed, the problem of lifting a path to the logarithmic manifold is completely equivalent to the problem of finding a continuation of the hypercomplex logarithm along this path. The second part of the paper scrutinizes the existence of a notion of winding number (with respect to the origin) for hypercomplex loops that avoid the origin, even though it is known that the definition of winding number for such loops is not natural in ${\mathbb R}^n$ when $n$ is greater than $2$. The surprise is that, in the hypercomplex setting, the new definition of winding number introduced in this paper can be given and has full meaning for a large class of hypercomplex loops (untwisted loops with companion that avoid the origin). Finally an original but rather natural notion of homotopy for these hypercomplex loops (the $c$-homotopy) is presented and it is proved to be suitable to comply with the intrinsic geometrical meaning of the winding number for this class of loops, namely, two such hypercomplex loops are $c$-homotopic if, and only if, they have the same winding number.
Jezik:
Angleški jezik
Ključne besede:
hypercomplex logarithm
,
continuation of the hypercomplex logarithm along paths
,
winding number
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Datum objave:
01.08.2024
Leto izida:
2024
Št. strani:
25 str.
Številčenje:
Vol. 536, iss. 1, [article no.] 128219
PID:
20.500.12556/RUL-154818
UDK:
517.5
ISSN pri članku:
0022-247X
DOI:
10.1016/j.jmaa.2024.128219
COBISS.SI-ID:
187512579
Datum objave v RUL:
04.03.2024
Število ogledov:
498
Število prenosov:
70
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of mathematical analysis and applications
Skrajšan naslov:
J. math. anal. appl.
Založnik:
Elsevier
ISSN:
0022-247X
COBISS.SI-ID:
3081231
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
INdaM, GNSAGA
Naslov:
Hypercomplex function theory and applications
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
MIUR, Finanziamento Premiale FOE
Naslov:
Splines for accUrate NumeRics: adaptIve models for Simulation Environments
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P1-0291
Naslov:
Analiza in geometrija
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
N1-0237
Naslov:
Holomorfne parcialne diferencialne relacije
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J1-3005
Naslov:
Kompleksna in geometrijska analiza
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj